DLMF:13.14.E6 (Q4495): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(8 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Q11581 / rank
 
Normal rank
Property / Symbols used: Q11581 / qualifier
 
test:

F 1 2 ( a , b ; c ; z ) Gauss-hypergeometric-F-as-2F1 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};% \NVar{z}\right)}}

\genhyperF{2}{1}@{\NVar{a},\NVar{b}}{\NVar{c}}{\NVar{z}}
Property / Symbols used: Q11581 / qualifier
 
xml-id: C16.S2.m5adec
Property / Symbols used
 
Property / Symbols used: Q10759 / rank
 
Normal rank
Property / Symbols used: Q10759 / qualifier
 
test:

( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}

\Pochhammersym{\NVar{a}}{\NVar{n}}
Property / Symbols used: Q10759 / qualifier
 
xml-id: C5.S2.SS3.m1adec
Property / Symbols used
 
Property / Symbols used: Whittaker confluent hypergeometric function / rank
 
Normal rank
Property / Symbols used: Whittaker confluent hypergeometric function / qualifier
 
test:

M κ , μ ( z ) Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle M_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}

\WhittakerconfhyperM{\NVar{\kappa}}{\NVar{\mu}}@{\NVar{z}}
Property / Symbols used: Whittaker confluent hypergeometric function / qualifier
 
xml-id: C13.S14.E2.m2abdec
Property / Symbols used
 
Property / Symbols used: base of natural logarithm / rank
 
Normal rank
Property / Symbols used: base of natural logarithm / qualifier
 
test:

e {\displaystyle{\displaystyle\mathrm{e}}}

\expe
Property / Symbols used: base of natural logarithm / qualifier
 
xml-id: C4.S2.E11.m2addec
Property / Symbols used
 
Property / Symbols used: Q10755 / rank
 
Normal rank
Property / Symbols used: Q10755 / qualifier
 
test:

! {\displaystyle{\displaystyle!}}

!
Property / Symbols used: Q10755 / qualifier
 
xml-id: introduction.Sx4.p1.t1.r15.m5adec
Property / Symbols used
 
Property / Symbols used: Q11559 / rank
 
Normal rank
Property / Symbols used: Q11559 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11559 / qualifier
 
xml-id: C13.S1.XMD2.m1dec
Property / Symbols used
 
Property / Symbols used: Q11558 / rank
 
Normal rank
Property / Symbols used: Q11558 / qualifier
 
test:

s 𝑠 {\displaystyle{\displaystyle s}}

s
Property / Symbols used: Q11558 / qualifier
 
xml-id: C13.S1.XMD3.m1dec
Property / Symbols used
 
Property / Symbols used: Q11557 / rank
 
Normal rank
Property / Symbols used: Q11557 / qualifier
 
test:

z 𝑧 {\displaystyle{\displaystyle z}}

z
Property / Symbols used: Q11557 / qualifier
 
xml-id: C13.S1.XMD6.m1edec
Property / Symbols used
 
Property / Symbols used: base of natural logarithm / rank
 
Normal rank
Property / Symbols used: base of natural logarithm / qualifier
 
test:

e {\displaystyle{\displaystyle\mathrm{e}}}

\expe
Property / Symbols used: base of natural logarithm / qualifier
 
xml-id: C4.S2.E11.m2addec

Latest revision as of 15:05, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:13.14.E6
No description defined

    Statements

    M κ , μ ( z ) = e - 1 2 z z 1 2 + μ s = 0 ( 1 2 + μ - κ ) s ( 1 + 2 μ ) s s ! z s = z 1 2 + μ n = 0 F 1 2 ( - n , 1 2 + μ - κ 1 + 2 μ ; 2 ) ( - 1 2 z ) n n ! , Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 superscript 𝑒 1 2 𝑧 superscript 𝑧 1 2 𝜇 superscript subscript 𝑠 0 Pochhammer 1 2 𝜇 𝜅 𝑠 Pochhammer 1 2 𝜇 𝑠 𝑠 superscript 𝑧 𝑠 superscript 𝑧 1 2 𝜇 superscript subscript 𝑛 0 Gauss-hypergeometric-F-as-2F1 𝑛 1 2 𝜇 𝜅 1 2 𝜇 2 superscript 1 2 𝑧 𝑛 𝑛 {\displaystyle{\displaystyle M_{\kappa,\mu}\left(z\right)=e^{-\frac{1}{2}z}z^{% \frac{1}{2}+\mu}\sum_{s=0}^{\infty}\frac{{\left(\frac{1}{2}+\mu-\kappa\right)_% {s}}}{{\left(1+2\mu\right)_{s}}s!}z^{s}=z^{\frac{1}{2}+\mu}\sum_{n=0}^{\infty}% {{}_{2}F_{1}}\left({-n,\tfrac{1}{2}+\mu-\kappa\atop 1+2\mu};2\right)\frac{% \left(-\tfrac{1}{2}z\right)^{n}}{n!},}}
    0 references
    0 references
    2 μ - 1 , - 2 , - 3 , 2 𝜇 1 2 3 {\displaystyle{\displaystyle 2\mu\neq-1,-2,-3,\dots}}
    0 references
    F 1 2 ( a , b ; c ; z ) Gauss-hypergeometric-F-as-2F1 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};% \NVar{z}\right)}}
    C16.S2.m5adec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1adec
    0 references
    M κ , μ ( z ) Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle M_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E2.m2abdec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2addec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C13.S1.XMD2.m1dec
    0 references
    s 𝑠 {\displaystyle{\displaystyle s}}
    C13.S1.XMD3.m1dec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C13.S1.XMD6.m1edec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2addec
    0 references