DLMF:18.11.E2 (Q5636): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(4 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Whittaker confluent hypergeometric function / rank
 
Normal rank
Property / Symbols used: Whittaker confluent hypergeometric function / qualifier
 
test:

W κ , μ ( z ) Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle W_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}

\WhittakerconfhyperW{\NVar{\kappa}}{\NVar{\mu}}@{\NVar{z}}
Property / Symbols used: Whittaker confluent hypergeometric function / qualifier
 
xml-id: C13.S14.E3.m2adec
Property / Symbols used
 
Property / Symbols used: base of natural logarithm / rank
 
Normal rank
Property / Symbols used: base of natural logarithm / qualifier
 
test:

e {\displaystyle{\displaystyle\mathrm{e}}}

\expe
Property / Symbols used: base of natural logarithm / qualifier
 
xml-id: C4.S2.E11.m2adec
Property / Symbols used
 
Property / Symbols used: Q10755 / rank
 
Normal rank
Property / Symbols used: Q10755 / qualifier
 
test:

! {\displaystyle{\displaystyle!}}

!
Property / Symbols used: Q10755 / qualifier
 
xml-id: introduction.Sx4.p1.t1.r15.m5adec
Property / Symbols used
 
Property / Symbols used: Q11726 / rank
 
Normal rank
Property / Symbols used: Q11726 / qualifier
 
test:

n 𝑛 {\displaystyle{\displaystyle n}}

n
Property / Symbols used: Q11726 / qualifier
 
xml-id: C18.S1.XMD6.m1adec
Property / Symbols used
 
Property / Symbols used: Q11727 / rank
 
Normal rank
Property / Symbols used: Q11727 / qualifier
 
test:

x 𝑥 {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11727 / qualifier
 
xml-id: C18.S2.XMD3.m1adec

Latest revision as of 14:29, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:18.11.E2
No description defined

    Statements

    L n ( α ) ( x ) = ( α + 1 ) n n ! M ( - n , α + 1 , x ) = ( - 1 ) n n ! U ( - n , α + 1 , x ) = ( α + 1 ) n n ! x - 1 2 ( α + 1 ) e 1 2 x M n + 1 2 ( α + 1 ) , 1 2 α ( x ) = ( - 1 ) n n ! x - 1 2 ( α + 1 ) e 1 2 x W n + 1 2 ( α + 1 ) , 1 2 α ( x ) . Laguerre-polynomial-L 𝛼 𝑛 𝑥 Pochhammer 𝛼 1 𝑛 𝑛 Kummer-confluent-hypergeometric-M 𝑛 𝛼 1 𝑥 superscript 1 𝑛 𝑛 Kummer-confluent-hypergeometric-U 𝑛 𝛼 1 𝑥 Pochhammer 𝛼 1 𝑛 𝑛 superscript 𝑥 1 2 𝛼 1 superscript 𝑒 1 2 𝑥 Whittaker-confluent-hypergeometric-M 𝑛 1 2 𝛼 1 1 2 𝛼 𝑥 superscript 1 𝑛 𝑛 superscript 𝑥 1 2 𝛼 1 superscript 𝑒 1 2 𝑥 Whittaker-confluent-hypergeometric-W 𝑛 1 2 𝛼 1 1 2 𝛼 𝑥 {\displaystyle{\displaystyle L^{(\alpha)}_{n}\left(x\right)=\frac{{\left(% \alpha+1\right)_{n}}}{n!}M\left(-n,\alpha+1,x\right)=\frac{(-1)^{n}}{n!}U\left% (-n,\alpha+1,x\right)=\frac{{\left(\alpha+1\right)_{n}}}{n!}x^{-\frac{1}{2}(% \alpha+1)}e^{\frac{1}{2}x}M_{n+\frac{1}{2}(\alpha+1),\frac{1}{2}\alpha}\left(x% \right)=\frac{(-1)^{n}}{n!}x^{-\frac{1}{2}(\alpha+1)}e^{\frac{1}{2}x}W_{n+% \frac{1}{2}(\alpha+1),\frac{1}{2}\alpha}\left(x\right).}}
    0 references
    0 references
    M ( a , b , z ) Kummer-confluent-hypergeometric-M 𝑎 𝑏 𝑧 {\displaystyle{\displaystyle M\left(\NVar{a},\NVar{b},\NVar{z}\right)}}
    C13.S2.E2.m2adec
    0 references
    U ( a , b , z ) Kummer-confluent-hypergeometric-U 𝑎 𝑏 𝑧 {\displaystyle{\displaystyle U\left(\NVar{a},\NVar{b},\NVar{z}\right)}}
    C13.S2.E6.m2adec
    0 references
    L n ( α ) ( x ) Laguerre-polynomial-L 𝛼 𝑛 𝑥 {\displaystyle{\displaystyle L^{(\NVar{\alpha})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r12.m2adec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1aadec
    0 references
    M κ , μ ( z ) Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle M_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E2.m2adec
    0 references
    W κ , μ ( z ) Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle W_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E3.m2adec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2adec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C18.S1.XMD6.m1adec
    0 references
    x 𝑥 {\displaystyle{\displaystyle x}}
    C18.S2.XMD3.m1adec
    0 references