DLMF:19.14.E1 (Q6306): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(7 intermediate revisions by the same user not shown)
Property / constraint
 

cos ϕ = 3 + 1 - x 3 - 1 + x italic-ϕ 3 1 𝑥 3 1 𝑥 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x}}}

\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x}
Property / constraint: cos ϕ = 3 + 1 - x 3 - 1 + x italic-ϕ 3 1 𝑥 3 1 𝑥 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x}}} / rank
 
Normal rank
Property / constraint
 

k 2 = 2 - 3 4 superscript 𝑘 2 2 3 4 {\displaystyle{\displaystyle k^{2}=\dfrac{2-\sqrt{3}}{4}}}

k^{2}=\dfrac{2-\sqrt{3}}{4}
Property / constraint: k 2 = 2 - 3 4 superscript 𝑘 2 2 3 4 {\displaystyle{\displaystyle k^{2}=\dfrac{2-\sqrt{3}}{4}}} / rank
 
Normal rank
Property / Symbols used
 
Property / Symbols used: cosine function / rank
 
Normal rank
Property / Symbols used: cosine function / qualifier
 
test:

cos z 𝑧 {\displaystyle{\displaystyle\cos\NVar{z}}}

\cos@@{\NVar{z}}
Property / Symbols used: cosine function / qualifier
 
xml-id: C4.S14.E2.m2adec
Property / Symbols used
 
Property / Symbols used: Q10770 / rank
 
Normal rank
Property / Symbols used: Q10770 / qualifier
 
test:

d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}

\diff{\NVar{x}}
Property / Symbols used: Q10770 / qualifier
 
xml-id: C1.S4.SS4.m1adec
Property / Symbols used
 
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / rank
 
Normal rank
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
test:

F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}

\incellintFk@{\NVar{\phi}}{\NVar{k}}
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
xml-id: C19.S2.E4.m2adec
Property / Symbols used
 
Property / Symbols used: Q10771 / rank
 
Normal rank
Property / Symbols used: Q10771 / qualifier
 
test:

{\displaystyle{\displaystyle\int}}

\int
Property / Symbols used: Q10771 / qualifier
 
xml-id: C1.S4.SS4.m3adec
Property / Symbols used
 
Property / Symbols used: Q11807 / rank
 
Normal rank
Property / Symbols used: Q11807 / qualifier
 
test:

ϕ italic-ϕ {\displaystyle{\displaystyle\phi}}

\phi
Property / Symbols used: Q11807 / qualifier
 
xml-id: C19.S1.XMD4.m1dec
Property / Symbols used
 
Property / Symbols used: Q11808 / rank
 
Normal rank
Property / Symbols used: Q11808 / qualifier
 
test:

k 𝑘 {\displaystyle{\displaystyle k}}

k
Property / Symbols used: Q11808 / qualifier
 
xml-id: C19.S1.XMD5.m1dec

Latest revision as of 12:50, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:19.14.E1
No description defined

    Statements

    1 x d t t 3 - 1 = 3 - 1 / 4 F ( ϕ , k ) , superscript subscript 1 𝑥 𝑡 superscript 𝑡 3 1 superscript 3 1 4 elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle\int_{1}^{x}\frac{\mathrm{d}t}{\sqrt{t^{3}-1}}=3^{% -1/4}F\left(\phi,k\right),}}
    0 references
    0 references
    cos ϕ = 3 + 1 - x 3 - 1 + x italic-ϕ 3 1 𝑥 3 1 𝑥 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x}}}
    0 references
    cos ϕ = 3 + 1 - x 3 - 1 + x italic-ϕ 3 1 𝑥 3 1 𝑥 {\displaystyle{\displaystyle\cos\phi=\dfrac{\sqrt{3}+1-x}{\sqrt{3}-1+x}}}
    0 references
    k 2 = 2 - 3 4 superscript 𝑘 2 2 3 4 {\displaystyle{\displaystyle k^{2}=\dfrac{2-\sqrt{3}}{4}}}
    0 references
    cos z 𝑧 {\displaystyle{\displaystyle\cos\NVar{z}}}
    C4.S14.E2.m2adec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1adec
    0 references
    F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}
    C19.S2.E4.m2adec
    0 references
    {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3adec
    0 references
    ϕ italic-ϕ {\displaystyle{\displaystyle\phi}}
    C19.S1.XMD4.m1dec
    0 references
    k 𝑘 {\displaystyle{\displaystyle k}}
    C19.S1.XMD5.m1dec
    0 references