DLMF:19.25.E5 (Q6509): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / rank
 
Normal rank
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
test:

F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}

\incellintFk@{\NVar{\phi}}{\NVar{k}}
Property / Symbols used: Legendre’s incomplete elliptic integral of the first kind / qualifier
 
xml-id: C19.S2.E4.m2adec
Property / Symbols used
 
Property / Symbols used: Q11807 / rank
 
Normal rank
Property / Symbols used: Q11807 / qualifier
 
test:

ϕ italic-ϕ {\displaystyle{\displaystyle\phi}}

\phi
Property / Symbols used: Q11807 / qualifier
 
xml-id: C19.S1.XMD4.m1dec
Property / Symbols used
 
Property / Symbols used: Q11808 / rank
 
Normal rank
Property / Symbols used: Q11808 / qualifier
 
test:

k 𝑘 {\displaystyle{\displaystyle k}}

k
Property / Symbols used: Q11808 / qualifier
 
xml-id: C19.S1.XMD5.m1ddec

Latest revision as of 13:05, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:19.25.E5
No description defined

    Statements

    F ( ϕ , k ) = R F ( c - 1 , c - k 2 , c ) , elliptic-integral-first-kind-F italic-ϕ 𝑘 Carlson-integral-RF 𝑐 1 𝑐 superscript 𝑘 2 𝑐 {\displaystyle{\displaystyle F\left(\phi,k\right)=R_{F}\left(c-1,c-k^{2},c% \right),}}
    0 references
    0 references
    R F ( x , y , z ) Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(\NVar{x},\NVar{y},\NVar{z}\right)}}
    C19.S16.E1.m2aadec
    0 references
    F ( ϕ , k ) elliptic-integral-first-kind-F italic-ϕ 𝑘 {\displaystyle{\displaystyle F\left(\NVar{\phi},\NVar{k}\right)}}
    C19.S2.E4.m2adec
    0 references
    ϕ italic-ϕ {\displaystyle{\displaystyle\phi}}
    C19.S1.XMD4.m1dec
    0 references
    k 𝑘 {\displaystyle{\displaystyle k}}
    C19.S1.XMD5.m1ddec
    0 references