DLMF:19.26.E13 (Q6567): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / constraint
 

σ = ( α β + θ ) / ( α + β ) 𝜎 𝛼 𝛽 𝜃 𝛼 𝛽 {\displaystyle{\displaystyle\sigma=(\alpha\beta+\theta)/(\alpha+\beta)}}

\sigma=(\alpha\beta+\theta)/(\alpha+\beta)
Property / constraint: σ = ( α β + θ ) / ( α + β ) 𝜎 𝛼 𝛽 𝜃 𝛼 𝛽 {\displaystyle{\displaystyle\sigma=(\alpha\beta+\theta)/(\alpha+\beta)}} / rank
 
Normal rank
Property / Symbols used
 
Property / Symbols used: Carlson’s combination of inverse circular and inverse hyperbolic functions / rank
 
Normal rank
Property / Symbols used: Carlson’s combination of inverse circular and inverse hyperbolic functions / qualifier
 
test:

R C ( x , y ) Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{C}\left(\NVar{x},\NVar{y}\right)}}

\CarlsonellintRC@{\NVar{x}}{\NVar{y}}
Property / Symbols used: Carlson’s combination of inverse circular and inverse hyperbolic functions / qualifier
 
xml-id: C19.S2.E17.m2abdec
Property / Symbols used
 
Property / Symbols used: Q11809 / rank
 
Normal rank
Property / Symbols used: Q11809 / qualifier
 
test:

α 2 superscript 𝛼 2 {\displaystyle{\displaystyle\alpha^{2}}}

\alpha^{2}
Property / Symbols used: Q11809 / qualifier
 
xml-id: C19.S1.XMD7.m1dec

Latest revision as of 13:12, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:19.26.E13
No description defined

    Statements

    R C ( α 2 , α 2 - θ ) + R C ( β 2 , β 2 - θ ) = R C ( σ 2 , σ 2 - θ ) , Carlson-integral-RC superscript 𝛼 2 superscript 𝛼 2 𝜃 Carlson-integral-RC superscript 𝛽 2 superscript 𝛽 2 𝜃 Carlson-integral-RC superscript 𝜎 2 superscript 𝜎 2 𝜃 {\displaystyle{\displaystyle R_{C}\left(\alpha^{2},\alpha^{2}-\theta\right)+R_% {C}\left(\beta^{2},\beta^{2}-\theta\right)=R_{C}\left(\sigma^{2},\sigma^{2}-% \theta\right),}}
    0 references
    0 references
    σ = ( α β + θ ) / ( α + β ) 𝜎 𝛼 𝛽 𝜃 𝛼 𝛽 {\displaystyle{\displaystyle\sigma=(\alpha\beta+\theta)/(\alpha+\beta)}}
    0 references
    R C ( x , y ) Carlson-integral-RC 𝑥 𝑦 {\displaystyle{\displaystyle R_{C}\left(\NVar{x},\NVar{y}\right)}}
    C19.S2.E17.m2abdec
    0 references
    α 2 superscript 𝛼 2 {\displaystyle{\displaystyle\alpha^{2}}}
    C19.S1.XMD7.m1dec
    0 references