DLMF:22.6.E7 (Q6941): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: Jacobian elliptic function / rank
 
Normal rank
Property / Symbols used: Jacobian elliptic function / qualifier
 
test:

dn ( z , k ) Jacobi-elliptic-dn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{dn}\left(\NVar{z},\NVar{k}\right)}}

\Jacobielldnk@{\NVar{z}}{\NVar{k}}
Property / Symbols used: Jacobian elliptic function / qualifier
 
xml-id: C22.S2.E6.m2acdec
Property / Symbols used
 
Property / Symbols used: Jacobian elliptic function / rank
 
Normal rank
Property / Symbols used: Jacobian elliptic function / qualifier
 
test:

sn ( z , k ) Jacobi-elliptic-sn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(\NVar{z},\NVar{k}\right)}}

\Jacobiellsnk@{\NVar{z}}{\NVar{k}}
Property / Symbols used: Jacobian elliptic function / qualifier
 
xml-id: C22.S2.E4.m2acdec
Property / Symbols used
 
Property / Symbols used: Q11985 / rank
 
Normal rank
Property / Symbols used: Q11985 / qualifier
 
test:

z 𝑧 {\displaystyle{\displaystyle z}}

z
Property / Symbols used: Q11985 / qualifier
 
xml-id: C22.S1.XMD3.m1fdec

Latest revision as of 13:57, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:22.6.E7
No description defined

    Statements

    dn ( 2 z , k ) = dn 2 ( z , k ) - k 2 sn 2 ( z , k ) cn 2 ( z , k ) 1 - k 2 sn 4 ( z , k ) = dn 4 ( z , k ) + k 2 k 2 sn 4 ( z , k ) 1 - k 2 sn 4 ( z , k ) . Jacobi-elliptic-dn 2 𝑧 𝑘 Jacobi-elliptic-dn 2 𝑧 𝑘 superscript 𝑘 2 Jacobi-elliptic-sn 2 𝑧 𝑘 Jacobi-elliptic-cn 2 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 Jacobi-elliptic-dn 4 𝑧 𝑘 superscript 𝑘 2 superscript superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 1 superscript 𝑘 2 Jacobi-elliptic-sn 4 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{dn}\left(2z,k\right)=\frac{{% \operatorname{dn}^{2}}\left(z,k\right)-k^{2}{\operatorname{sn}^{2}}\left(z,k% \right){\operatorname{cn}^{2}}\left(z,k\right)}{1-k^{2}{\operatorname{sn}^{4}}% \left(z,k\right)}=\frac{{\operatorname{dn}^{4}}\left(z,k\right)+k^{2}{k^{% \prime}}^{2}{\operatorname{sn}^{4}}\left(z,k\right)}{1-k^{2}{\operatorname{sn}% ^{4}}\left(z,k\right)}.}}
    0 references
    0 references
    cn ( z , k ) Jacobi-elliptic-cn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{cn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E5.m2acdec
    0 references
    dn ( z , k ) Jacobi-elliptic-dn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{dn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E6.m2acdec
    0 references
    sn ( z , k ) Jacobi-elliptic-sn 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sn}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E4.m2acdec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C22.S1.XMD3.m1fdec
    0 references