DLMF:25.11.E19 (Q7693): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
| Property / Symbols used | |||
| Property / Symbols used: Q12162 / rank | |||
Normal rank | |||
| Property / Symbols used: Q12162 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k}k | |||
| Property / Symbols used: Q12162 / qualifier | |||
xml-id: C25.S11.XMD2.m1dec | |||
Latest revision as of 12:39, 2 January 2020
No description defined
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | DLMF:25.11.E19 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Hurwitzzeta'@{s}{a}=-\frac{\ln@@{a}}{a^{s}}\left(\frac{1}{2}+\frac{a}{s-1}\right)-\frac{a^{1-s}}{(s-1)^{2}}+\frac{s(s+1)}{2}\int_{0}^{\infty}\frac{(\perBernoulliB{2}@{x}-\BernoullinumberB{2})\ln@{x+a}}{(x+a)^{s+2}}\diff{x}-\frac{(2s+1)}{2}\int_{0}^{\infty}\frac{\perBernoulliB{2}@{x}-\BernoullinumberB{2}}{(x+a)^{s+2}}\diff{x},}
0 references
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{s}>-1}
0 references
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s\neq 1}
0 references
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a>0}
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references