DLMF:34.5.E1 (Q9741): Difference between revisions
Jump to navigation
Jump to search
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
imported>Admin Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
(2 intermediate revisions by the same user not shown) | |||
Property / Symbols used | |||
Property / Symbols used: $$\mathit{6j}$$ symbol / rank | |||
Normal rank | |||
Property / Symbols used: $$\mathit{6j}$$ symbol / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wignersixjsym{\NVar{j_{1}}}{\NVar{j_{2}}}{\NVar{j_{3}}}{\NVar{l_{1}}}{\NVar{l% _{2}}}{\NVar{l_{3}}}}\Wignersixjsym{\NVar{j_{1}}}{\NVar{j_{2}}}{\NVar{j_{3}}}{\NVar{l_{1}}}{\NVar{l% _{2}}}{\NVar{l_{3}}} | |||
Property / Symbols used: $$\mathit{6j}$$ symbol / qualifier | |||
xml-id: C34.S4.E1.m2adec | |||
Property / Symbols used | |||
Property / Symbols used: Q12709 / rank | |||
Normal rank | |||
Property / Symbols used: Q12709 / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle j,j_{r}}j,j_{r} | |||
Property / Symbols used: Q12709 / qualifier | |||
xml-id: C34.S1.XMD1.m1dec | |||
Property / Symbols used | |||
Property / Symbols used: sum (locally) / rank | |||
Normal rank | |||
Property / Symbols used: sum (locally) / qualifier | |||
test: Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle J}J | |||
Property / Symbols used: sum (locally) / qualifier | |||
xml-id: C34.S3.XMD1.m1dec |
Latest revision as of 13:43, 2 January 2020
No description defined
Language | Label | Description | Also known as |
---|---|---|---|
English | DLMF:34.5.E1 |
No description defined |
Statements
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wignersixjsym{j_{1}}{j_{2}}{j_{3}}{0}{j_{3}}{j_{2}}=\frac{(-1)^{J}}{\left((2j_{2}+1)(2j_{3}+1)\right)^{\frac{1}{2}}},}
0 references
0 references
0 references
0 references