4.13: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.13.E1 4.13.E1] || [[Item:Q1639|<math>We^{W} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>We^{W} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W*exp(W) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>W*Exp[W] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263026030+2.030302705*I
| [https://dlmf.nist.gov/4.13.E1 4.13.E1] || <math qid="Q1639">We^{W} = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>We^{W} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>W*exp(W) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>W*Exp[W] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.763026030+2.030302705*I
Line 22: Line 22:
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWp@{-1/e} = \LambertWm@{-1/e}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{-1/e} = \LambertWm@{-1/e}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || <math qid="Q1640">\LambertWp@{-1/e} = \LambertWm@{-1/e}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{-1/e} = \LambertWm@{-1/e}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || [[Item:Q1640|<math>\LambertWm@{-1/e} = -1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWm@{-1/e} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(-1, - 1/exp(1)) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[-1, - 1/E] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.13#Ex1 4.13#Ex1] || <math qid="Q1640">\LambertWm@{-1/e} = -1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWm@{-1/e} = -1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(-1, - 1/exp(1)) = - 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[-1, - 1/E] == - 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex2 4.13#Ex2] || [[Item:Q1641|<math>\LambertWp@{0} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, 0] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.13#Ex2 4.13#Ex2] || <math qid="Q1641">\LambertWp@{0} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{0} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, 0) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, 0] == 0</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex3 4.13#Ex3] || [[Item:Q1642|<math>\LambertWp@{e} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.13#Ex3 4.13#Ex3] || <math qid="Q1642">\LambertWp@{e} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{e} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>LambertW(0, exp(1)) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, E] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex4 4.13#Ex4] || [[Item:Q1643|<math>U+\ln@@{U} = x</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U+\ln@@{U} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U + ln(U) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>U + Log[U] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6339745958+1.023598776*I
| [https://dlmf.nist.gov/4.13#Ex4 4.13#Ex4] || <math qid="Q1643">U+\ln@@{U} = x</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U+\ln@@{U} = x</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U + ln(U) = x</syntaxhighlight> || <syntaxhighlight lang=mathematica>U + Log[U] == x</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.133974596+1.023598776*I
Line 38: Line 38:
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U = U(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U = U(x)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U = U*(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>U == U*(x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4330127020-.2500000000*I
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || <math qid="Q1644">U = U(x)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U = U(x)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U = U*(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>U == U*(x)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I
Line 46: Line 46:
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || [[Item:Q1644|<math>U(x) = \LambertW@{e^{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U(x) = \LambertW@{e^{x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U(x) = LambertW(exp(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>U[x] == ProductLog[Exp[x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .34078386e-1+.7500000000*I
| [https://dlmf.nist.gov/4.13#Ex5 4.13#Ex5] || <math qid="Q1644">U(x) = \LambertW@{e^{x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>U(x) = \LambertW@{e^{x}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>U(x) = LambertW(exp(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>U[x] == ProductLog[Exp[x]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .174905209+1.*I
Line 54: Line 54:
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.13.E5 4.13.E5] || [[Item:Q1646|<math>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</syntaxhighlight> || <math>|x| < \dfrac{1}{e}</math> || <syntaxhighlight lang=mathematica>LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 0]
| [https://dlmf.nist.gov/4.13.E5 4.13.E5] || <math qid="Q1646">\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}</syntaxhighlight> || <math>|x| < \dfrac{1}{e}</math> || <syntaxhighlight lang=mathematica>LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 0]
|-  
|-  
| [https://dlmf.nist.gov/4.13.E6 4.13.E6] || [[Item:Q1647|<math>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</syntaxhighlight> || <math>|t| < 2\sqrt{\pi}</math> || <syntaxhighlight lang=mathematica>LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
| [https://dlmf.nist.gov/4.13.E6 4.13.E6] || <math qid="Q1647">\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}</syntaxhighlight> || <math>|t| < 2\sqrt{\pi}</math> || <syntaxhighlight lang=mathematica>LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [60 / 60]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Line 64: Line 64:
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E7 4.13.E7] || [[Item:Q1648|<math>c_{0} = 1,c_{1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0} = 1,c_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0] = 1; c[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0] == 1
| [https://dlmf.nist.gov/4.13.E7 4.13.E7] || <math qid="Q1648">c_{0} = 1,c_{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0} = 1,c_{1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0] = 1; c[1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0] == 1
  Subscript[c, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
  Subscript[c, 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E8 4.13.E8] || [[Item:Q1649|<math>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</syntaxhighlight> || <math>n \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.13.E8 4.13.E8] || <math qid="Q1649">c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)</syntaxhighlight> || <math>n \geq 2</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/4.13.E9 4.13.E9] || [[Item:Q1650|<math>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/4.13.E9 4.13.E9] || <math qid="Q1650">1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:05, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.13.E1 W e W = x 𝑊 superscript 𝑒 𝑊 𝑥 {\displaystyle{\displaystyle We^{W}=x}}
We^{W} = x

W*exp(W) = x
W*Exp[W] == x
Failure Failure
Failed [30 / 30]
Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.096603674+.1092863076*I
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.2630260306572938, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.7369739693427062, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex1 Wp ( - 1 / e ) = Wm ( - 1 / e ) Lambert-Wp 1 𝑒 Lambert-Wm 1 𝑒 {\displaystyle{\displaystyle\mathrm{Wp}\left(-1/e\right)=\mathrm{Wm}\left(-1/e% \right)}}
\LambertWp@{-1/e} = \LambertWm@{-1/e}

LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))
ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]
Successful Successful - Successful [Tested: 1]
4.13#Ex1 Wm ( - 1 / e ) = - 1 Lambert-Wm 1 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wm}\left(-1/e\right)=-1}}
\LambertWm@{-1/e} = -1

LambertW(-1, - 1/exp(1)) = - 1
ProductLog[-1, - 1/E] == - 1
Successful Successful - Successful [Tested: 1]
4.13#Ex2 Wp ( 0 ) = 0 Lambert-Wp 0 0 {\displaystyle{\displaystyle\mathrm{Wp}\left(0\right)=0}}
\LambertWp@{0} = 0

LambertW(0, 0) = 0
ProductLog[0, 0] == 0
Successful Successful - Successful [Tested: 1]
4.13#Ex3 Wp ( e ) = 1 Lambert-Wp 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wp}\left(e\right)=1}}
\LambertWp@{e} = 1

LambertW(0, exp(1)) = 1
ProductLog[0, E] == 1
Successful Successful - Successful [Tested: 1]
4.13#Ex4 U + ln U = x 𝑈 𝑈 𝑥 {\displaystyle{\displaystyle U+\ln U=x}}
U+\ln@@{U} = x

U + ln(U) = x
U + Log[U] == x
Failure Failure
Failed [30 / 30]
Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.000000000+2.960420506*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.6339745962155613, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.3660254037844387, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U = U ( x ) 𝑈 𝑈 𝑥 {\displaystyle{\displaystyle U=U(x)}}
U = U(x)

U = U*(x)
U == U*(x)
Failure Failure
Failed [30 / 30]
Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: .2500000000-.4330127020*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.4330127018922193, -0.24999999999999994]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U ( x ) = W ( e x ) 𝑈 𝑥 Lambert-W superscript 𝑒 𝑥 {\displaystyle{\displaystyle U(x)=W\left(e^{x}\right)}}
U(x) = \LambertW@{e^{x}}

U(x) = LambertW(exp(x))
U[x] == ProductLog[Exp[x]]
Failure Failure
Failed [30 / 30]
Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.014959720+1.299038106*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.0340783855511575, 0.7499999999999999]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[-0.333235906269531, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13.E5 Wp ( x ) = n = 1 ( - 1 ) n - 1 n n - 2 ( n - 1 ) ! x n Lambert-Wp 𝑥 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 𝑛 𝑛 2 𝑛 1 superscript 𝑥 𝑛 {\displaystyle{\displaystyle\mathrm{Wp}\left(x\right)=\sum_{n=1}^{\infty}(-1)^% {n-1}\frac{n^{n-2}}{(n-1)!}x^{n}}}
\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}
| x | < 1 e 𝑥 1 𝑒 {\displaystyle{\displaystyle|x|<\dfrac{1}{e}}}
LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)
ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Error Successful [Tested: 0]
4.13.E6 W ( - e - 1 - ( t 2 / 2 ) ) = n = 0 ( - 1 ) n - 1 c n t n Lambert-W superscript 𝑒 1 superscript 𝑡 2 2 superscript subscript 𝑛 0 superscript 1 𝑛 1 subscript 𝑐 𝑛 superscript 𝑡 𝑛 {\displaystyle{\displaystyle W\left(-e^{-1-(t^{2}/2)}\right)=\sum_{n=0}^{% \infty}(-1)^{n-1}c_{n}t^{n}}}
\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}
| t | < 2 π 𝑡 2 𝜋 {\displaystyle{\displaystyle|t|<2\sqrt{\pi}}}
LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)
ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [60 / 60]
Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [60 / 60]
Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.13.E7 c 0 = 1 , c 1 subscript 𝑐 0 1 subscript 𝑐 1 {\displaystyle{\displaystyle c_{0}=1,c_{1}}}
c_{0} = 1,c_{1}

c[0] = 1; c[1]
Subscript[c, 0] == 1
 Subscript[c, 1]
Skipped - no semantic math Skipped - no semantic math - -
4.13.E8 c n = 1 n + 1 ( c n - 1 - k = 2 n - 1 k c k c n + 1 - k ) subscript 𝑐 𝑛 1 𝑛 1 subscript 𝑐 𝑛 1 superscript subscript 𝑘 2 𝑛 1 𝑘 subscript 𝑐 𝑘 subscript 𝑐 𝑛 1 𝑘 {\displaystyle{\displaystyle c_{n}=\frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}% kc_{k}c_{n+1-k}\right)}}
c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)
n 2 𝑛 2 {\displaystyle{\displaystyle n\geq 2}}
c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))
Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])
Skipped - no semantic math Skipped - no semantic math - -
4.13.E9 1 3 5 ( 2 n + 1 ) c 2 n + 1 = g n 1 3 5 2 𝑛 1 subscript 𝑐 2 𝑛 1 subscript 𝑔 𝑛 {\displaystyle{\displaystyle 1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1}=g_{n}}}
1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}

1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]
1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]
Skipped - no semantic math Skipped - no semantic math - -