4.14: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E1 4.14.E1] | | | [https://dlmf.nist.gov/4.14.E1 4.14.E1] || <math qid="Q1653">\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z) = (exp(I*z)- exp(- I*z))/(2*I)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E2 4.14.E2] | | | [https://dlmf.nist.gov/4.14.E2 4.14.E2] || <math qid="Q1654">\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z) = (exp(I*z)+ exp(- I*z))/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] | | | [https://dlmf.nist.gov/4.14.E3 4.14.E3] || <math qid="Q1655">\cos@@{z}+ i\sin@@{z} = e^{+ iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}+ i\sin@@{z} = e^{+ iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)+ I*sin(z) = exp(+ I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]+ I*Sin[z] == Exp[+ I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E3 4.14.E3] | | | [https://dlmf.nist.gov/4.14.E3 4.14.E3] || <math qid="Q1655">\cos@@{z}- i\sin@@{z} = e^{- iz}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{z}- i\sin@@{z} = e^{- iz}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z)- I*sin(z) = exp(- I*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z]- I*Sin[z] == Exp[- I*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E4 4.14.E4] | | | [https://dlmf.nist.gov/4.14.E4 4.14.E4] || <math qid="Q1656">\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z) = (sin(z))/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z] == Divide[Sin[z],Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E5 4.14.E5] | | | [https://dlmf.nist.gov/4.14.E5 4.14.E5] || <math qid="Q1657">\csc@@{z} = \frac{1}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\csc@@{z} = \frac{1}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>csc(z) = (1)/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Csc[z] == Divide[1,Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E6 4.14.E6] | | | [https://dlmf.nist.gov/4.14.E6 4.14.E6] || <math qid="Q1658">\sec@@{z} = \frac{1}{\cos@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sec@@{z} = \frac{1}{\cos@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sec(z) = (1)/(cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sec[z] == Divide[1,Cos[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] | | | [https://dlmf.nist.gov/4.14.E7 4.14.E7] || <math qid="Q1659">\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cot(z) = (cos(z))/(sin(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cot[z] == Divide[Cos[z],Sin[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E7 4.14.E7] | | | [https://dlmf.nist.gov/4.14.E7 4.14.E7] || <math qid="Q1659">\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(cos(z))/(sin(z)) = (1)/(tan(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E8 4.14.E8] | | | [https://dlmf.nist.gov/4.14.E8 4.14.E8] || <math qid="Q1660">\sin@{z+2k\pi} = \sin@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@{z+2k\pi} = \sin@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin(z + 2*k*Pi) = sin(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[z + 2*k*Pi] == Sin[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E9 4.14.E9] | | | [https://dlmf.nist.gov/4.14.E9 4.14.E9] || <math qid="Q1661">\cos@{z+2k\pi} = \cos@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@{z+2k\pi} = \cos@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos(z + 2*k*Pi) = cos(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[z + 2*k*Pi] == Cos[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.14.E10 4.14.E10] | | | [https://dlmf.nist.gov/4.14.E10 4.14.E10] || <math qid="Q1662">\tan@{z+k\pi} = \tan@@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\tan@{z+k\pi} = \tan@@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>tan(z + k*Pi) = tan(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Tan[z + k*Pi] == Tan[z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 21] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.14.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}}
\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | sin(z) = (exp(I*z)- exp(- I*z))/(2*I)
|
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}}
\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | cos(z) = (exp(I*z)+ exp(- I*z))/(2)
|
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z}+ i\sin@@{z} = e^{+ iz}}
\cos@@{z}+ i\sin@@{z} = e^{+ iz} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | cos(z)+ I*sin(z) = exp(+ I*z)
|
Cos[z]+ I*Sin[z] == Exp[+ I*z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z}- i\sin@@{z} = e^{- iz}}
\cos@@{z}- i\sin@@{z} = e^{- iz} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | cos(z)- I*sin(z) = exp(- I*z)
|
Cos[z]- I*Sin[z] == Exp[- I*z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E4 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}}
\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | tan(z) = (sin(z))/(cos(z))
|
Tan[z] == Divide[Sin[z],Cos[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \csc@@{z} = \frac{1}{\sin@@{z}}}
\csc@@{z} = \frac{1}{\sin@@{z}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | csc(z) = (1)/(sin(z))
|
Csc[z] == Divide[1,Sin[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sec@@{z} = \frac{1}{\cos@@{z}}}
\sec@@{z} = \frac{1}{\cos@@{z}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | sec(z) = (1)/(cos(z))
|
Sec[z] == Divide[1,Cos[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}}
\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | cot(z) = (cos(z))/(sin(z))
|
Cot[z] == Divide[Cos[z],Sin[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}}
\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (cos(z))/(sin(z)) = (1)/(tan(z))
|
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z+2k\pi} = \sin@@{z}}
\sin@{z+2k\pi} = \sin@@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | sin(z + 2*k*Pi) = sin(z)
|
Sin[z + 2*k*Pi] == Sin[z]
|
Successful | Failure | - | Successful [Tested: 21] |
4.14.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z+2k\pi} = \cos@@{z}}
\cos@{z+2k\pi} = \cos@@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | cos(z + 2*k*Pi) = cos(z)
|
Cos[z + 2*k*Pi] == Cos[z]
|
Successful | Failure | - | Successful [Tested: 21] |
4.14.E10 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@{z+k\pi} = \tan@@{z}}
\tan@{z+k\pi} = \tan@@{z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | tan(z + k*Pi) = tan(z)
|
Tan[z + k*Pi] == Tan[z]
|
Successful | Failure | - | Successful [Tested: 21] |