4.26: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E1 4.26.E1] | | | [https://dlmf.nist.gov/4.26.E1 4.26.E1] || <math qid="Q1817">\int\sin@@{x}\diff{x} = -\cos@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sin@@{x}\diff{x} = -\cos@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin(x), x) = - cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E2 4.26.E2] | | | [https://dlmf.nist.gov/4.26.E2 4.26.E2] || <math qid="Q1818">\int\cos@@{x}\diff{x} = \sin@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cos@@{x}\diff{x} = \sin@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos(x), x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E3 4.26.E3] | | | [https://dlmf.nist.gov/4.26.E3 4.26.E3] || <math qid="Q1819">\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi < x, x < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(tan(x), x) = - ln(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E4 4.26.E4] | | | [https://dlmf.nist.gov/4.26.E4 4.26.E4] || <math qid="Q1820">\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(csc(x), x) = ln(tan((1)/(2)*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E5 4.26.E5] | | | [https://dlmf.nist.gov/4.26.E5 4.26.E5] || <math qid="Q1821">\int\sec@@{x}\diff{x} = \aGudermannian@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(sec(x), x) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E6 4.26.E6] | | | [https://dlmf.nist.gov/4.26.E6 4.26.E6] || <math qid="Q1822">\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(cot(x), x) = ln(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E7 4.26.E7] | | | [https://dlmf.nist.gov/4.26.E7 4.26.E7] || <math qid="Q1823">\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E8 4.26.E8] | | | [https://dlmf.nist.gov/4.26.E8 4.26.E8] || <math qid="Q1824">\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E9 4.26.E9] | | | [https://dlmf.nist.gov/4.26.E9 4.26.E9] || <math qid="Q1825">\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(sin(m*t)*sin(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E10 4.26.E10] | | | [https://dlmf.nist.gov/4.26.E10 4.26.E10] || <math qid="Q1826">\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(cos(m*t)*cos(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] | | | [https://dlmf.nist.gov/4.26.E11 4.26.E11] || <math qid="Q1827">\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] | | | [https://dlmf.nist.gov/4.26.E11 4.26.E11] || <math qid="Q1827">\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] | | | [https://dlmf.nist.gov/4.26.E13 4.26.E13] || <math qid="Q1829">\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] | | | [https://dlmf.nist.gov/4.26.E13 4.26.E13] || <math qid="Q1829">\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E14 4.26.E14] | | | [https://dlmf.nist.gov/4.26.E14 4.26.E14] || <math qid="Q1830">\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E15 4.26.E15] | | | [https://dlmf.nist.gov/4.26.E15 4.26.E15] || <math qid="Q1831">\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E16 4.26.E16] | | | [https://dlmf.nist.gov/4.26.E16 4.26.E16] || <math qid="Q1832">\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E17 4.26.E17] | | | [https://dlmf.nist.gov/4.26.E17 4.26.E17] || <math qid="Q1833">\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966] | ||
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.440892098500626*^-16, -1.5707963267948966] | Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.440892098500626*^-16, -1.5707963267948966] | ||
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E18 4.26.E18] | | | [https://dlmf.nist.gov/4.26.E18 4.26.E18] || <math qid="Q1834">\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, 1.5707963267948966] | ||
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 1.5707963267948966] | Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 1.5707963267948966] | ||
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E19 4.26.E19] | | | [https://dlmf.nist.gov/4.26.E19 4.26.E19] || <math qid="Q1835">\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E20 4.26.E20] | | | [https://dlmf.nist.gov/4.26.E20 4.26.E20] || <math qid="Q1836">\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.26.E21 4.26.E21] | | | [https://dlmf.nist.gov/4.26.E21 4.26.E21] || <math qid="Q1837">\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3926990817 | ||
Test Values: {x = .5}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.3926990816987242 | Test Values: {x = .5}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.3926990816987242 | ||
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br></div></div> | Test Values: {Rule[x, 0.5]}</syntaxhighlight><br></div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:08, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.26.E1 | \int\sin@@{x}\diff{x} = -\cos@@{x} |
|
int(sin(x), x) = - cos(x)
|
Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]
|
Successful | Successful | - | Successful [Tested: 3] |
4.26.E2 | \int\cos@@{x}\diff{x} = \sin@@{x} |
|
int(cos(x), x) = sin(x)
|
Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]
|
Successful | Successful | - | Successful [Tested: 3] |
4.26.E3 | \int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}} |
int(tan(x), x) = - ln(cos(x))
|
Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]
|
Successful | Successful | - | Successful [Tested: 2] | |
4.26.E4 | \int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}} |
int(csc(x), x) = ln(tan((1)/(2)*x))
|
Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.26.E5 | \int\sec@@{x}\diff{x} = \aGudermannian@{x} |
int(sec(x), x) = arctanh(sin(x))
|
Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]
|
Failure | Failure | Successful [Tested: 2] | Successful [Tested: 2] | |
4.26.E6 | \int\cot@@{x}\diff{x} = \ln@{\sin@@{x}} |
int(cot(x), x) = ln(sin(x))
|
Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]
|
Successful | Successful | - | Successful [Tested: 3] | |
4.26.E7 | \int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx}) |
|
int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))
|
Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])
|
Successful | Successful | - | Successful [Tested: 108] |
4.26.E8 | \int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx}) |
|
int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))
|
Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])
|
Successful | Successful | - | Successful [Tested: 108] |
4.26.E9 | \int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0 |
int(sin(m*t)*sin(n*t), t = 0..Pi) = 0
|
Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
|
Successful | Failure | - | Successful [Tested: 6] | |
4.26.E10 | \int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0 |
int(cos(m*t)*cos(n*t), t = 0..Pi) = 0
|
Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
|
Successful | Failure | - | Successful [Tested: 6] | |
4.26.E11 | \int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t} |
int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)
|
Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]
|
Successful | Failure | - | Successful [Tested: 3] | |
4.26.E11 | \int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi |
int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi
|
Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi
|
Successful | Failure | - | Successful [Tested: 3] | |
4.26.E13 | \int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t} |
|
int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)
|
Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 1] |
4.26.E13 | \int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}} |
|
int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))
|
Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]
|
Successful | Successful | - | Successful [Tested: 1] |
4.26.E14 | \int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2} |
int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)
|
Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)
|
Successful | Successful | - | Successful [Tested: 1] | |
4.26.E15 | \int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2} |
int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)
|
Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)
|
Successful | Successful | - | Successful [Tested: 1] | |
4.26.E16 | \int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}} |
int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))
|
Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]
|
Successful | Successful | - | Successful [Tested: 3] | |
4.26.E17 | \int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}} |
int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))
|
Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]
|
Successful | Failure | - | Failed [2 / 2]
Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}
Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 2]}
| |
4.26.E18 | \int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}} |
int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))
|
Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]
|
Successful | Failure | - | Failed [2 / 2]
Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}
Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 2]}
| |
4.26.E19 | \int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}} |
int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))
|
Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]
|
Successful | Successful | - | Successful [Tested: 3] | |
4.26.E20 | \int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2} |
int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)
|
Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)
|
Successful | Successful | - | Successful [Tested: 1] | |
4.26.E21 | \int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2} |
int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)
|
Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)
|
Failure | Failure | Failed [1 / 1] Result: .3926990817
Test Values: {x = .5}
|
Failed [1 / 1]
Result: 0.3926990816987242
Test Values: {Rule[x, 0.5]}
|