4.26: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/4.26.E1 4.26.E1] || [[Item:Q1817|<math>\int\sin@@{x}\diff{x} = -\cos@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sin@@{x}\diff{x} = -\cos@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin(x), x) = - cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E1 4.26.E1] || <math qid="Q1817">\int\sin@@{x}\diff{x} = -\cos@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sin@@{x}\diff{x} = -\cos@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin(x), x) = - cos(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E2 4.26.E2] || [[Item:Q1818|<math>\int\cos@@{x}\diff{x} = \sin@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cos@@{x}\diff{x} = \sin@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos(x), x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E2 4.26.E2] || <math qid="Q1818">\int\cos@@{x}\diff{x} = \sin@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cos@@{x}\diff{x} = \sin@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos(x), x) = sin(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E3 4.26.E3] || [[Item:Q1819|<math>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi < x, x < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(tan(x), x) = - ln(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2]
| [https://dlmf.nist.gov/4.26.E3 4.26.E3] || <math qid="Q1819">\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}</syntaxhighlight> || <math>-\tfrac{1}{2}\pi < x, x < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(tan(x), x) = - ln(cos(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E4 4.26.E4] || [[Item:Q1820|<math>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(csc(x), x) = ln(tan((1)/(2)*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E4 4.26.E4] || <math qid="Q1820">\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(csc(x), x) = ln(tan((1)/(2)*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E5 4.26.E5] || [[Item:Q1821|<math>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(sec(x), x) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
| [https://dlmf.nist.gov/4.26.E5 4.26.E5] || <math qid="Q1821">\int\sec@@{x}\diff{x} = \aGudermannian@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\sec@@{x}\diff{x} = \aGudermannian@{x}</syntaxhighlight> || <math>-\frac{1}{2}\pi < x, x < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>int(sec(x), x) = arctanh(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 2] || Successful [Tested: 2]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E6 4.26.E6] || [[Item:Q1822|<math>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(cot(x), x) = ln(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E6 4.26.E6] || <math qid="Q1822">\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}</syntaxhighlight> || <math>0 < x, x < \pi</math> || <syntaxhighlight lang=mathematica>int(cot(x), x) = ln(sin(x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E7 4.26.E7] || [[Item:Q1823|<math>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
| [https://dlmf.nist.gov/4.26.E7 4.26.E7] || <math qid="Q1823">\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E8 4.26.E8] || [[Item:Q1824|<math>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
| [https://dlmf.nist.gov/4.26.E8 4.26.E8] || <math qid="Q1824">\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 108]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E9 4.26.E9] || [[Item:Q1825|<math>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(sin(m*t)*sin(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
| [https://dlmf.nist.gov/4.26.E9 4.26.E9] || <math qid="Q1825">\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(sin(m*t)*sin(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E10 4.26.E10] || [[Item:Q1826|<math>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(cos(m*t)*cos(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
| [https://dlmf.nist.gov/4.26.E10 4.26.E10] || <math qid="Q1826">\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0</syntaxhighlight> || <math>m \neq n</math> || <syntaxhighlight lang=mathematica>int(cos(m*t)*cos(n*t), t = 0..Pi) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || [[Item:Q1827|<math>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || <math qid="Q1827">\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || [[Item:Q1827|<math>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E11 4.26.E11] || <math qid="Q1827">\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>n \neq 0</math> || <syntaxhighlight lang=mathematica>int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || [[Item:Q1829|<math>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || <math qid="Q1829">\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || [[Item:Q1829|<math>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.26.E13 4.26.E13] || <math qid="Q1829">\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E14 4.26.E14] || [[Item:Q1830|<math>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.26.E14 4.26.E14] || <math qid="Q1830">\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E15 4.26.E15] || [[Item:Q1831|<math>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.26.E15 4.26.E15] || <math qid="Q1831">\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E16 4.26.E16] || [[Item:Q1832|<math>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E16 4.26.E16] || <math qid="Q1832">\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>-\infty < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E17 4.26.E17] || [[Item:Q1833|<math>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
| [https://dlmf.nist.gov/4.26.E17 4.26.E17] || <math qid="Q1833">\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.26.E18 4.26.E18] || [[Item:Q1834|<math>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
| [https://dlmf.nist.gov/4.26.E18 4.26.E18] || <math qid="Q1834">\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}</syntaxhighlight> || <math>1 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 2]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
Test Values: {Rule[x, 2]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/4.26.E19 4.26.E19] || [[Item:Q1835|<math>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/4.26.E19 4.26.E19] || <math qid="Q1835">\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}</syntaxhighlight> || <math>0 < x, x < \infty</math> || <syntaxhighlight lang=mathematica>int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E20 4.26.E20] || [[Item:Q1836|<math>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/4.26.E20 4.26.E20] || <math qid="Q1836">\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/4.26.E21 4.26.E21] || [[Item:Q1837|<math>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3926990817
| [https://dlmf.nist.gov/4.26.E21 4.26.E21] || <math qid="Q1837">\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}</syntaxhighlight> || <math>-1 < x, x < 1</math> || <syntaxhighlight lang=mathematica>int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .3926990817
Test Values: {x = .5}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.3926990816987242
Test Values: {x = .5}</syntaxhighlight><br></div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 1]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.3926990816987242
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br></div></div>
Test Values: {Rule[x, 0.5]}</syntaxhighlight><br></div></div>
|}
|}
</div>
</div>

Latest revision as of 11:08, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.26.E1 sin x d x = - cos x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\sin x\mathrm{d}x=-\cos x}}
\int\sin@@{x}\diff{x} = -\cos@@{x}

int(sin(x), x) = - cos(x)
Integrate[Sin[x], x, GenerateConditions->None] == - Cos[x]
Successful Successful - Successful [Tested: 3]
4.26.E2 cos x d x = sin x 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\cos x\mathrm{d}x=\sin x}}
\int\cos@@{x}\diff{x} = \sin@@{x}

int(cos(x), x) = sin(x)
Integrate[Cos[x], x, GenerateConditions->None] == Sin[x]
Successful Successful - Successful [Tested: 3]
4.26.E3 tan x d x = - ln ( cos x ) 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\tan x\mathrm{d}x=-\ln\left(\cos x\right)}}
\int\tan@@{x}\diff{x} = -\ln@{\cos@@{x}}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi<x,x<\tfrac{1}{2}\pi}}
int(tan(x), x) = - ln(cos(x))
Integrate[Tan[x], x, GenerateConditions->None] == - Log[Cos[x]]
Successful Successful - Successful [Tested: 2]
4.26.E4 csc x d x = ln ( tan 1 2 x ) 𝑥 𝑥 1 2 𝑥 {\displaystyle{\displaystyle\int\csc x\mathrm{d}x=\ln\left(\tan\tfrac{1}{2}x% \right)}}
\int\csc@@{x}\diff{x} = \ln@{\tan@@{\tfrac{1}{2}x}}
0 < x , x < π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0<x,x<\pi}}
int(csc(x), x) = ln(tan((1)/(2)*x))
Integrate[Csc[x], x, GenerateConditions->None] == Log[Tan[Divide[1,2]*x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.26.E5 sec x d x = gd - 1 ( x ) 𝑥 𝑥 inverse-Gudermannian 𝑥 {\displaystyle{\displaystyle\int\sec x\mathrm{d}x={\operatorname{gd}^{-1}}% \left(x\right)}}
\int\sec@@{x}\diff{x} = \aGudermannian@{x}
- 1 2 π < x , x < 1 2 π formulae-sequence 1 2 𝜋 𝑥 𝑥 1 2 𝜋 {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
int(sec(x), x) = arctanh(sin(x))
Integrate[Sec[x], x, GenerateConditions->None] == InverseGudermannian[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.26.E6 cot x d x = ln ( sin x ) 𝑥 𝑥 𝑥 {\displaystyle{\displaystyle\int\cot x\mathrm{d}x=\ln\left(\sin x\right)}}
\int\cot@@{x}\diff{x} = \ln@{\sin@@{x}}
0 < x , x < π formulae-sequence 0 𝑥 𝑥 𝜋 {\displaystyle{\displaystyle 0<x,x<\pi}}
int(cot(x), x) = ln(sin(x))
Integrate[Cot[x], x, GenerateConditions->None] == Log[Sin[x]]
Successful Successful - Successful [Tested: 3]
4.26.E7 e a x sin ( b x ) d x = e a x a 2 + b 2 ( a sin ( b x ) - b cos ( b x ) ) superscript 𝑒 𝑎 𝑥 𝑏 𝑥 𝑥 superscript 𝑒 𝑎 𝑥 superscript 𝑎 2 superscript 𝑏 2 𝑎 𝑏 𝑥 𝑏 𝑏 𝑥 {\displaystyle{\displaystyle\int e^{ax}\sin\left(bx\right)\mathrm{d}x=\frac{e^% {ax}}{a^{2}+b^{2}}(a\sin\left(bx\right)-b\cos\left(bx\right))}}
\int e^{ax}\sin@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\sin@{bx}-b\cos@{bx})

int(exp(a*x)*sin(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*sin(b*x)- b*cos(b*x))
Integrate[Exp[a*x]*Sin[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Sin[b*x]- b*Cos[b*x])
Successful Successful - Successful [Tested: 108]
4.26.E8 e a x cos ( b x ) d x = e a x a 2 + b 2 ( a cos ( b x ) + b sin ( b x ) ) superscript 𝑒 𝑎 𝑥 𝑏 𝑥 𝑥 superscript 𝑒 𝑎 𝑥 superscript 𝑎 2 superscript 𝑏 2 𝑎 𝑏 𝑥 𝑏 𝑏 𝑥 {\displaystyle{\displaystyle\int e^{ax}\cos\left(bx\right)\mathrm{d}x=\frac{e^% {ax}}{a^{2}+b^{2}}(a\cos\left(bx\right)+b\sin\left(bx\right))}}
\int e^{ax}\cos@{bx}\diff{x} = \frac{e^{ax}}{a^{2}+b^{2}}(a\cos@{bx}+b\sin@{bx})

int(exp(a*x)*cos(b*x), x) = (exp(a*x))/((a)^(2)+ (b)^(2))*(a*cos(b*x)+ b*sin(b*x))
Integrate[Exp[a*x]*Cos[b*x], x, GenerateConditions->None] == Divide[Exp[a*x],(a)^(2)+ (b)^(2)]*(a*Cos[b*x]+ b*Sin[b*x])
Successful Successful - Successful [Tested: 108]
4.26.E9 0 π sin ( m t ) sin ( n t ) d t = 0 superscript subscript 0 𝜋 𝑚 𝑡 𝑛 𝑡 𝑡 0 {\displaystyle{\displaystyle\int_{0}^{\pi}\sin\left(mt\right)\sin\left(nt% \right)\mathrm{d}t=0}}
\int_{0}^{\pi}\sin@{mt}\sin@{nt}\diff{t} = 0
m n 𝑚 𝑛 {\displaystyle{\displaystyle m\neq n}}
int(sin(m*t)*sin(n*t), t = 0..Pi) = 0
Integrate[Sin[m*t]*Sin[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
Successful Failure - Successful [Tested: 6]
4.26.E10 0 π cos ( m t ) cos ( n t ) d t = 0 superscript subscript 0 𝜋 𝑚 𝑡 𝑛 𝑡 𝑡 0 {\displaystyle{\displaystyle\int_{0}^{\pi}\cos\left(mt\right)\cos\left(nt% \right)\mathrm{d}t=0}}
\int_{0}^{\pi}\cos@{mt}\cos@{nt}\diff{t} = 0
m n 𝑚 𝑛 {\displaystyle{\displaystyle m\neq n}}
int(cos(m*t)*cos(n*t), t = 0..Pi) = 0
Integrate[Cos[m*t]*Cos[n*t], {t, 0, Pi}, GenerateConditions->None] == 0
Successful Failure - Successful [Tested: 6]
4.26.E11 0 π sin 2 ( n t ) d t = 0 π cos 2 ( n t ) d t superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 {\displaystyle{\displaystyle\int_{0}^{\pi}{\sin^{2}}\left(nt\right)\mathrm{d}t% =\int_{0}^{\pi}{\cos^{2}}\left(nt\right)\mathrm{d}t}}
\int_{0}^{\pi}\sin^{2}@{nt}\diff{t} = \int_{0}^{\pi}\cos^{2}@{nt}\diff{t}
n 0 𝑛 0 {\displaystyle{\displaystyle n\neq 0}}
int((sin(n*t))^(2), t = 0..Pi) = int((cos(n*t))^(2), t = 0..Pi)
Integrate[(Sin[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None]
Successful Failure - Successful [Tested: 3]
4.26.E11 0 π cos 2 ( n t ) d t = 1 2 π superscript subscript 0 𝜋 2 𝑛 𝑡 𝑡 1 2 𝜋 {\displaystyle{\displaystyle\int_{0}^{\pi}{\cos^{2}}\left(nt\right)\mathrm{d}t% =\tfrac{1}{2}\pi}}
\int_{0}^{\pi}\cos^{2}@{nt}\diff{t} = \tfrac{1}{2}\pi
n 0 𝑛 0 {\displaystyle{\displaystyle n\neq 0}}
int((cos(n*t))^(2), t = 0..Pi) = (1)/(2)*Pi
Integrate[(Cos[n*t])^(2), {t, 0, Pi}, GenerateConditions->None] == Divide[1,2]*Pi
Successful Failure - Successful [Tested: 3]
4.26.E13 0 sin ( t 2 ) d t = 0 cos ( t 2 ) d t superscript subscript 0 superscript 𝑡 2 𝑡 superscript subscript 0 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\int_{0}^{\infty}\sin\left(t^{2}\right)\mathrm{d}t% =\int_{0}^{\infty}\cos\left(t^{2}\right)\mathrm{d}t}}
\int_{0}^{\infty}\sin@{t^{2}}\diff{t} = \int_{0}^{\infty}\cos@{t^{2}}\diff{t}

int(sin((t)^(2)), t = 0..infinity) = int(cos((t)^(2)), t = 0..infinity)
Integrate[Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 1]
4.26.E13 0 cos ( t 2 ) d t = 1 2 π 2 superscript subscript 0 superscript 𝑡 2 𝑡 1 2 𝜋 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\cos\left(t^{2}\right)\mathrm{d}t% =\frac{1}{2}\sqrt{\frac{\pi}{2}}}}
\int_{0}^{\infty}\cos@{t^{2}}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{2}}

int(cos((t)^(2)), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(2))
Integrate[Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,2]]
Successful Successful - Successful [Tested: 1]
4.26.E14 arcsin x d x = x arcsin x + ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 𝑥 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int\operatorname{arcsin}x\mathrm{d}x=x% \operatorname{arcsin}x+(1-x^{2})^{1/2}}}
\int\asin@@{x}\diff{x} = x\asin@@{x}+(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(arcsin(x), x) = x*arcsin(x)+(1 - (x)^(2))^(1/2)
Integrate[ArcSin[x], x, GenerateConditions->None] == x*ArcSin[x]+(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E15 arccos x d x = x arccos x - ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 𝑥 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int\operatorname{arccos}x\mathrm{d}x=x% \operatorname{arccos}x-(1-x^{2})^{1/2}}}
\int\acos@@{x}\diff{x} = x\acos@@{x}-(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(arccos(x), x) = x*arccos(x)-(1 - (x)^(2))^(1/2)
Integrate[ArcCos[x], x, GenerateConditions->None] == x*ArcCos[x]-(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E16 arctan x d x = x arctan x - 1 2 ln ( 1 + x 2 ) 𝑥 𝑥 𝑥 𝑥 1 2 1 superscript 𝑥 2 {\displaystyle{\displaystyle\int\operatorname{arctan}x\mathrm{d}x=x% \operatorname{arctan}x-\tfrac{1}{2}\ln\left(1+x^{2}\right)}}
\int\atan@@{x}\diff{x} = x\atan@@{x}-\tfrac{1}{2}\ln@{1+x^{2}}
- < x , x < formulae-sequence 𝑥 𝑥 {\displaystyle{\displaystyle-\infty<x,x<\infty}}
int(arctan(x), x) = x*arctan(x)-(1)/(2)*ln(1 + (x)^(2))
Integrate[ArcTan[x], x, GenerateConditions->None] == x*ArcTan[x]-Divide[1,2]*Log[1 + (x)^(2)]
Successful Successful - Successful [Tested: 3]
4.26.E17 arccsc x d x = x arccsc x + ln ( x + ( x 2 - 1 ) 1 / 2 ) 𝑥 𝑥 𝑥 𝑥 𝑥 superscript superscript 𝑥 2 1 1 2 {\displaystyle{\displaystyle\int\operatorname{arccsc}x\mathrm{d}x=x% \operatorname{arccsc}x+\ln\left(x+(x^{2}-1)^{1/2}\right)}}
\int\acsc@@{x}\diff{x} = x\acsc@@{x}+\ln@{x+(x^{2}-1)^{1/2}}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arccsc(x), x) = x*arccsc(x)+ ln(x +((x)^(2)- 1)^(1/2))
Integrate[ArcCsc[x], x, GenerateConditions->None] == x*ArcCsc[x]+ Log[x +((x)^(2)- 1)^(1/2)]
Successful Failure -
Failed [2 / 2]
Result: Complex[-1.1102230246251565*^-16, -1.5707963267948966]
Test Values: {Rule[x, 1.5]}

Result: Complex[-4.440892098500626*^-16, -1.5707963267948966]
Test Values: {Rule[x, 2]}

4.26.E18 arcsec x d x = x arcsec x - ln ( x + ( x 2 - 1 ) 1 / 2 ) 𝑥 𝑥 𝑥 𝑥 𝑥 superscript superscript 𝑥 2 1 1 2 {\displaystyle{\displaystyle\int\operatorname{arcsec}x\mathrm{d}x=x% \operatorname{arcsec}x-\ln\left(x+(x^{2}-1)^{1/2}\right)}}
\int\asec@@{x}\diff{x} = x\asec@@{x}-\ln@{x+(x^{2}-1)^{1/2}}
1 < x , x < formulae-sequence 1 𝑥 𝑥 {\displaystyle{\displaystyle 1<x,x<\infty}}
int(arcsec(x), x) = x*arcsec(x)- ln(x +((x)^(2)- 1)^(1/2))
Integrate[ArcSec[x], x, GenerateConditions->None] == x*ArcSec[x]- Log[x +((x)^(2)- 1)^(1/2)]
Successful Failure -
Failed [2 / 2]
Result: Complex[1.1102230246251565*^-16, 1.5707963267948966]
Test Values: {Rule[x, 1.5]}

Result: Complex[4.440892098500626*^-16, 1.5707963267948966]
Test Values: {Rule[x, 2]}

4.26.E19 arccot x d x = x arccot x + 1 2 ln ( 1 + x 2 ) 𝑥 𝑥 𝑥 𝑥 1 2 1 superscript 𝑥 2 {\displaystyle{\displaystyle\int\operatorname{arccot}x\mathrm{d}x=x% \operatorname{arccot}x+\tfrac{1}{2}\ln\left(1+x^{2}\right)}}
\int\acot@@{x}\diff{x} = x\acot@@{x}+\tfrac{1}{2}\ln@{1+x^{2}}
0 < x , x < formulae-sequence 0 𝑥 𝑥 {\displaystyle{\displaystyle 0<x,x<\infty}}
int(arccot(x), x) = x*arccot(x)+(1)/(2)*ln(1 + (x)^(2))
Integrate[ArcCot[x], x, GenerateConditions->None] == x*ArcCot[x]+Divide[1,2]*Log[1 + (x)^(2)]
Successful Successful - Successful [Tested: 3]
4.26.E20 x arcsin x d x = ( x 2 2 - 1 4 ) arcsin x + x 4 ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 superscript 𝑥 2 2 1 4 𝑥 𝑥 4 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int x\operatorname{arcsin}x\mathrm{d}x=\left(% \frac{x^{2}}{2}-\frac{1}{4}\right)\operatorname{arcsin}x+\frac{x}{4}(1-x^{2})^% {1/2}}}
\int x\asin@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\asin@@{x}+\frac{x}{4}(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(x*arcsin(x), x) = (((x)^(2))/(2)-(1)/(4))*arcsin(x)+(x)/(4)*(1 - (x)^(2))^(1/2)
Integrate[x*ArcSin[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcSin[x]+Divide[x,4]*(1 - (x)^(2))^(1/2)
Successful Successful - Successful [Tested: 1]
4.26.E21 x arccos x d x = ( x 2 2 - 1 4 ) arccos x - x 4 ( 1 - x 2 ) 1 / 2 𝑥 𝑥 𝑥 superscript 𝑥 2 2 1 4 𝑥 𝑥 4 superscript 1 superscript 𝑥 2 1 2 {\displaystyle{\displaystyle\int x\operatorname{arccos}x\mathrm{d}x=\left(% \frac{x^{2}}{2}-\frac{1}{4}\right)\operatorname{arccos}x-\frac{x}{4}(1-x^{2})^% {1/2}}}
\int x\acos@@{x}\diff{x} = \left(\frac{x^{2}}{2}-\frac{1}{4}\right)\acos@@{x}-\frac{x}{4}(1-x^{2})^{1/2}
- 1 < x , x < 1 formulae-sequence 1 𝑥 𝑥 1 {\displaystyle{\displaystyle-1<x,x<1}}
int(x*arccos(x), x) = (((x)^(2))/(2)-(1)/(4))*arccos(x)-(x)/(4)*(1 - (x)^(2))^(1/2)
Integrate[x*ArcCos[x], x, GenerateConditions->None] == (Divide[(x)^(2),2]-Divide[1,4])*ArcCos[x]-Divide[x,4]*(1 - (x)^(2))^(1/2)
Failure Failure
Failed [1 / 1]
Result: .3926990817
Test Values: {x = .5}

Failed [1 / 1]
Result: 0.3926990816987242
Test Values: {Rule[x, 0.5]}