5.12: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || [[Item:Q2146|<math>\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Beta(a, b) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Beta[a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || <math qid="Q2146">\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Beta(a, b) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Beta[a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [11 / 36]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[b, -2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || [[Item:Q2146|<math>\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 9]
| [https://dlmf.nist.gov/5.12.E1 5.12.E1] || <math qid="Q2146">\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/5.12.E2 5.12.E2] || [[Item:Q2147|<math>\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(theta))^(2*a - 1)* (cos(theta))^(2*b - 1), theta = 0..Pi/2) = (1)/(2)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[\[Theta]])^(2*a - 1)* (Cos[\[Theta]])^(2*b - 1), {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,2]*Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
| [https://dlmf.nist.gov/5.12.E2 5.12.E2] || <math qid="Q2147">\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(theta))^(2*a - 1)* (cos(theta))^(2*b - 1), theta = 0..Pi/2) = (1)/(2)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[\[Theta]])^(2*a - 1)* (Cos[\[Theta]])^(2*b - 1), {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,2]*Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/5.12.E3 5.12.E3] || [[Item:Q2148|<math>\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1))/((1 + t)^(a + b)), t = 0..infinity) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1),(1 + t)^(a + b)], {t, 0, Infinity}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
| [https://dlmf.nist.gov/5.12.E3 5.12.E3] || <math qid="Q2148">\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1))/((1 + t)^(a + b)), t = 0..infinity) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1),(1 + t)^(a + b)], {t, 0, Infinity}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Failure || Successful || Error || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/5.12.E4 5.12.E4] || [[Item:Q2149|<math>\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1)*(1 - t)^(b - 1))/((t + z)^(a + b)), t = 0..1) = Beta(a, b)*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1)*(1 - t)^(b - 1),(t + z)^(a + b)], {t, 0, 1}, GenerateConditions->None] == Beta[a, b]*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [77 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/5.12.E4 5.12.E4] || <math qid="Q2149">\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}</syntaxhighlight> || <math>|\phase@@{z}| < \pi, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int(((t)^(a - 1)*(1 - t)^(b - 1))/((t + z)^(a + b)), t = 0..1) = Beta(a, b)*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[(t)^(a - 1)*(1 - t)^(b - 1),(t + z)^(a + b)], {t, 0, 1}, GenerateConditions->None] == Beta[a, b]*(1 + z)^(- a)* (z)^(- b)</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [77 / 252]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/5.12.E5 5.12.E5] || [[Item:Q2150|<math>\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((cos(t))^(a - 1)* cos(b*t), t = 0..Pi/2) = (Pi)/((2)^(a))*(1)/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[t])^(a - 1)* Cos[b*t], {t, 0, Pi/2}, GenerateConditions->None] == Divide[Pi,(2)^(a)]*Divide[1,a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || Skipped - Because timed out
| [https://dlmf.nist.gov/5.12.E5 5.12.E5] || <math qid="Q2150">\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((cos(t))^(a - 1)* cos(b*t), t = 0..Pi/2) = (Pi)/((2)^(a))*(1)/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Cos[t])^(a - 1)* Cos[b*t], {t, 0, Pi/2}, GenerateConditions->None] == Divide[Pi,(2)^(a)]*Divide[1,a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/5.12.E6 5.12.E6] || [[Item:Q2151|<math>\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(t))^(a - 1)* exp(I*b*t), t = 0..Pi) = (Pi)/((2)^(a - 1))*(exp(I*Pi*b/2))/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[t])^(a - 1)* Exp[I*b*t], {t, 0, Pi}, GenerateConditions->None] == Divide[Pi,(2)^(a - 1)]*Divide[Exp[I*Pi*b/2],a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/5.12.E6 5.12.E6] || <math qid="Q2151">\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{(\frac{1}{2}(a+b+1))} > 0, \realpart@@{(\frac{1}{2}(a-b+1))} > 0, \realpart@@{((\frac{1}{2}(a+b+1))+b)} > 0, \realpart@@{(a+(\frac{1}{2}(a-b+1)))} > 0</math> || <syntaxhighlight lang=mathematica>int((sin(t))^(a - 1)* exp(I*b*t), t = 0..Pi) = (Pi)/((2)^(a - 1))*(exp(I*Pi*b/2))/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(Sin[t])^(a - 1)* Exp[I*b*t], {t, 0, Pi}, GenerateConditions->None] == Divide[Pi,(2)^(a - 1)]*Divide[Exp[I*Pi*b/2],a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 18] || <div class="toccolours mw-collapsible mw-collapsed">Failed [9 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, 1.5], Rule[b, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/5.12.E7 5.12.E7] || [[Item:Q2152|<math>\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</syntaxhighlight> || <math>\realpart@@{a} > |\realpart@@{b}|, \realpart@@{(a+b)} > 0, \realpart@@{(a-b)} > 0, \realpart@@{((a+b)+b)} > 0, \realpart@@{(a+(a-b))} > 0</math> || <syntaxhighlight lang=mathematica>int((cosh(2*b*t))/((cosh(t))^(2*a)), t = 0..infinity) = (4)^(a - 1)* Beta(a + b, a - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Cosh[2*b*t],(Cosh[t])^(2*a)], {t, 0, Infinity}, GenerateConditions->None] == (4)^(a - 1)* Beta[a + b, a - b]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
| [https://dlmf.nist.gov/5.12.E7 5.12.E7] || <math qid="Q2152">\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}</syntaxhighlight> || <math>\realpart@@{a} > |\realpart@@{b}|, \realpart@@{(a+b)} > 0, \realpart@@{(a-b)} > 0, \realpart@@{((a+b)+b)} > 0, \realpart@@{(a+(a-b))} > 0</math> || <syntaxhighlight lang=mathematica>int((cosh(2*b*t))/((cosh(t))^(2*a)), t = 0..infinity) = (4)^(a - 1)* Beta(a + b, a - b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Cosh[2*b*t],(Cosh[t])^(2*a)], {t, 0, Infinity}, GenerateConditions->None] == (4)^(a - 1)* Beta[a + b, a - b]</syntaxhighlight> || Failure || Failure || Successful [Tested: 6] || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/5.12.E8 5.12.E8] || [[Item:Q2153|<math>\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</syntaxhighlight> || <math>\realpart@{a+b} > 1, \realpart@@{w} > 0, \realpart@@{z} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1)/((w + I*t)^(a)*(z - I*t)^(b)), t = - infinity..infinity) = ((w + z)^(1 - a - b))/((a + b - 1)*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1,(w + I*t)^(a)*(z - I*t)^(b)], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(w + z)^(1 - a - b),(a + b - 1)*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Successful [Tested: 250]
| [https://dlmf.nist.gov/5.12.E8 5.12.E8] || <math qid="Q2153">\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}</syntaxhighlight> || <math>\realpart@{a+b} > 1, \realpart@@{w} > 0, \realpart@@{z} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi)*int((1)/((w + I*t)^(a)*(z - I*t)^(b)), t = - infinity..infinity) = ((w + z)^(1 - a - b))/((a + b - 1)*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi]*Integrate[Divide[1,(w + I*t)^(a)*(z - I*t)^(b)], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(w + z)^(1 - a - b),(a + b - 1)*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Successful [Tested: 250]
|-  
|-  
| [https://dlmf.nist.gov/5.12.E9 5.12.E9] || [[Item:Q2154|<math>\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</syntaxhighlight> || <math>0 < c, c < 1, \realpart@{a+b} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(- a)*(1 - t)^(- 1 - b), t = c - infinity*I..c + infinity*I) = (1)/(b*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(- a)*(1 - t)^(- 1 - b), {t, c - Infinity*I, c + Infinity*I}, GenerateConditions->None] == Divide[1,b*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/5.12.E9 5.12.E9] || <math qid="Q2154">\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}</syntaxhighlight> || <math>0 < c, c < 1, \realpart@{a+b} > 0, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(- a)*(1 - t)^(- 1 - b), t = c - infinity*I..c + infinity*I) = (1)/(b*Beta(a, b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(- a)*(1 - t)^(- 1 - b), {t, c - Infinity*I, c + Infinity*I}, GenerateConditions->None] == Divide[1,b*Beta[a, b]]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/5.12.E10 5.12.E10] || [[Item:Q2155|<math>\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(a - 1)*(t - 1)^(b - 1), t = 0..(1 +)) = (sin(Pi*b))/(Pi)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(a - 1)*(t - 1)^(b - 1), {t, 0, (1 +)}, GenerateConditions->None] == Divide[Sin[Pi*b],Pi]*Beta[a, b]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Error
| [https://dlmf.nist.gov/5.12.E10 5.12.E10] || <math qid="Q2155">\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(2*Pi*I)*int((t)^(a - 1)*(t - 1)^(b - 1), t = 0..(1 +)) = (sin(Pi*b))/(Pi)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*Pi*I]*Integrate[(t)^(a - 1)*(t - 1)^(b - 1), {t, 0, (1 +)}, GenerateConditions->None] == Divide[Sin[Pi*b],Pi]*Beta[a, b]</syntaxhighlight> || Skipped - Unable to analyze test case: Null || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/5.12.E11 5.12.E11] || [[Item:Q2156|<math>\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(exp(2*Pi*I*a)- 1)*int((t)^(a - 1)*(1 + t)^(- a - b), t = infinity..(0 +)) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Exp[2*Pi*I*a]- 1]*Integrate[(t)^(a - 1)*(1 + t)^(- a - b), {t, Infinity, (0 +)}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/5.12.E11 5.12.E11] || <math qid="Q2156">\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>(1)/(exp(2*Pi*I*a)- 1)*int((t)^(a - 1)*(1 + t)^(- a - b), t = infinity..(0 +)) = Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Exp[2*Pi*I*a]- 1]*Integrate[(t)^(a - 1)*(1 + t)^(- a - b), {t, Infinity, (0 +)}, GenerateConditions->None] == Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
|-  
|-  
| [https://dlmf.nist.gov/5.12.E12 5.12.E12] || [[Item:Q2157|<math>\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = P..(1 + , 0 + , 1 - , 0 -)) = - 4*exp(Pi*I*(a + b))*sin(Pi*a)*sin(Pi*b)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, P, (1 + , 0 + , 1 - , 0 -)}, GenerateConditions->None] == - 4*Exp[Pi*I*(a + b)]*Sin[Pi*a]*Sin[Pi*b]*Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/5.12.E12 5.12.E12] || <math qid="Q2157">\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(a - 1)*(1 - t)^(b - 1), t = P..(1 + , 0 + , 1 - , 0 -)) = - 4*exp(Pi*I*(a + b))*sin(Pi*a)*sin(Pi*b)*Beta(a, b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, P, (1 + , 0 + , 1 - , 0 -)}, GenerateConditions->None] == - 4*Exp[Pi*I*(a + b)]*Sin[Pi*a]*Sin[Pi*b]*Beta[a, b]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:13, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.12.E1 B ( a , b ) = 0 1 t a - 1 ( 1 - t ) b - 1 d t Euler-Beta 𝑎 𝑏 superscript subscript 0 1 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑏 1 𝑡 {\displaystyle{\displaystyle\mathrm{B}\left(a,b\right)=\int_{0}^{1}t^{a-1}(1-t% )^{b-1}\mathrm{d}t}}
\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t}

Beta(a, b) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1)
Beta[a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None]
Failure Successful Error
Failed [11 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2]}

Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, -2]}

... skip entries to safe data
5.12.E1 0 1 t a - 1 ( 1 - t ) b - 1 d t = Γ ( a ) Γ ( b ) Γ ( a + b ) superscript subscript 0 1 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑏 1 𝑡 Euler-Gamma 𝑎 Euler-Gamma 𝑏 Euler-Gamma 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{1}t^{a-1}(1-t)^{b-1}\mathrm{d}t=\frac{% \Gamma\left(a\right)\Gamma\left(b\right)}{\Gamma\left(a+b\right)}}}
\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))
Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 9]
5.12.E2 0 π / 2 sin 2 a - 1 θ cos 2 b - 1 θ d θ = 1 2 B ( a , b ) superscript subscript 0 𝜋 2 2 𝑎 1 𝜃 2 𝑏 1 𝜃 𝜃 1 2 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\pi/2}{\sin^{2a-1}}\theta{\cos^{2b-1}}% \theta\mathrm{d}\theta=\tfrac{1}{2}\mathrm{B}\left(a,b\right)}}
\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
int((sin(theta))^(2*a - 1)* (cos(theta))^(2*b - 1), theta = 0..Pi/2) = (1)/(2)*Beta(a, b)
Integrate[(Sin[\[Theta]])^(2*a - 1)* (Cos[\[Theta]])^(2*b - 1), {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,2]*Beta[a, b]
Failure Successful Error Successful [Tested: 9]
5.12.E3 0 t a - 1 d t ( 1 + t ) a + b = B ( a , b ) superscript subscript 0 superscript 𝑡 𝑎 1 𝑡 superscript 1 𝑡 𝑎 𝑏 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{t^{a-1}\mathrm{d}t}{(1+t)^{% a+b}}=\mathrm{B}\left(a,b\right)}}
\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
int(((t)^(a - 1))/((1 + t)^(a + b)), t = 0..infinity) = Beta(a, b)
Integrate[Divide[(t)^(a - 1),(1 + t)^(a + b)], {t, 0, Infinity}, GenerateConditions->None] == Beta[a, b]
Failure Successful Error Successful [Tested: 9]
5.12.E4 0 1 t a - 1 ( 1 - t ) b - 1 ( t + z ) a + b d t = B ( a , b ) ( 1 + z ) - a z - b superscript subscript 0 1 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑏 1 superscript 𝑡 𝑧 𝑎 𝑏 𝑡 Euler-Beta 𝑎 𝑏 superscript 1 𝑧 𝑎 superscript 𝑧 𝑏 {\displaystyle{\displaystyle\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}% \mathrm{d}t=\mathrm{B}\left(a,b\right)(1+z)^{-a}z^{-b}}}
\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b}
| ph z | < π , a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence phase 𝑧 𝜋 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,\Re a>0,\Re b>0,\Re(a+b)>% 0}}
int(((t)^(a - 1)*(1 - t)^(b - 1))/((t + z)^(a + b)), t = 0..1) = Beta(a, b)*(1 + z)^(- a)* (z)^(- b)
Integrate[Divide[(t)^(a - 1)*(1 - t)^(b - 1),(t + z)^(a + b)], {t, 0, 1}, GenerateConditions->None] == Beta[a, b]*(1 + z)^(- a)* (z)^(- b)
Failure Failure Skipped - Because timed out
Failed [77 / 252]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
5.12.E5 0 π / 2 ( cos t ) a - 1 cos ( b t ) d t = π 2 a 1 a B ( 1 2 ( a + b + 1 ) , 1 2 ( a - b + 1 ) ) superscript subscript 0 𝜋 2 superscript 𝑡 𝑎 1 𝑏 𝑡 𝑡 𝜋 superscript 2 𝑎 1 𝑎 Euler-Beta 1 2 𝑎 𝑏 1 1 2 𝑎 𝑏 1 {\displaystyle{\displaystyle\int_{0}^{\pi/2}(\cos t)^{a-1}\cos\left(bt\right)% \mathrm{d}t=\frac{\pi}{2^{a}}\frac{1}{a\mathrm{B}\left(\frac{1}{2}(a+b+1),% \frac{1}{2}(a-b+1)\right)}}}
\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}
a > 0 , ( 1 2 ( a + b + 1 ) ) > 0 , ( 1 2 ( a - b + 1 ) ) > 0 , ( ( 1 2 ( a + b + 1 ) ) + b ) > 0 , ( a + ( 1 2 ( a - b + 1 ) ) ) > 0 formulae-sequence 𝑎 0 formulae-sequence 1 2 𝑎 𝑏 1 0 formulae-sequence 1 2 𝑎 𝑏 1 0 formulae-sequence 1 2 𝑎 𝑏 1 𝑏 0 𝑎 1 2 𝑎 𝑏 1 0 {\displaystyle{\displaystyle\Re a>0,\Re(\frac{1}{2}(a+b+1))>0,\Re(\frac{1}{2}(% a-b+1))>0,\Re((\frac{1}{2}(a+b+1))+b)>0,\Re(a+(\frac{1}{2}(a-b+1)))>0}}
int((cos(t))^(a - 1)* cos(b*t), t = 0..Pi/2) = (Pi)/((2)^(a))*(1)/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))
Integrate[(Cos[t])^(a - 1)* Cos[b*t], {t, 0, Pi/2}, GenerateConditions->None] == Divide[Pi,(2)^(a)]*Divide[1,a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]
Failure Aborted Successful [Tested: 18] Skipped - Because timed out
5.12.E6 0 π ( sin t ) a - 1 e i b t d t = π 2 a - 1 e i π b / 2 a B ( 1 2 ( a + b + 1 ) , 1 2 ( a - b + 1 ) ) superscript subscript 0 𝜋 superscript 𝑡 𝑎 1 superscript 𝑒 𝑖 𝑏 𝑡 𝑡 𝜋 superscript 2 𝑎 1 superscript 𝑒 𝑖 𝜋 𝑏 2 𝑎 Euler-Beta 1 2 𝑎 𝑏 1 1 2 𝑎 𝑏 1 {\displaystyle{\displaystyle\int_{0}^{\pi}(\sin t)^{a-1}e^{ibt}\mathrm{d}t=% \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\mathrm{B}\left(\frac{1}{2}(a+b+1),% \frac{1}{2}(a-b+1)\right)}}}
\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}}
a > 0 , ( 1 2 ( a + b + 1 ) ) > 0 , ( 1 2 ( a - b + 1 ) ) > 0 , ( ( 1 2 ( a + b + 1 ) ) + b ) > 0 , ( a + ( 1 2 ( a - b + 1 ) ) ) > 0 formulae-sequence 𝑎 0 formulae-sequence 1 2 𝑎 𝑏 1 0 formulae-sequence 1 2 𝑎 𝑏 1 0 formulae-sequence 1 2 𝑎 𝑏 1 𝑏 0 𝑎 1 2 𝑎 𝑏 1 0 {\displaystyle{\displaystyle\Re a>0,\Re(\frac{1}{2}(a+b+1))>0,\Re(\frac{1}{2}(% a-b+1))>0,\Re((\frac{1}{2}(a+b+1))+b)>0,\Re(a+(\frac{1}{2}(a-b+1)))>0}}
int((sin(t))^(a - 1)* exp(I*b*t), t = 0..Pi) = (Pi)/((2)^(a - 1))*(exp(I*Pi*b/2))/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))
Integrate[(Sin[t])^(a - 1)* Exp[I*b*t], {t, 0, Pi}, GenerateConditions->None] == Divide[Pi,(2)^(a - 1)]*Divide[Exp[I*Pi*b/2],a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]
Failure Aborted Successful [Tested: 18]
Failed [9 / 18]
Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, -1.5]}

Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, 0.5]}

... skip entries to safe data
5.12.E7 0 cosh ( 2 b t ) ( cosh t ) 2 a d t = 4 a - 1 B ( a + b , a - b ) superscript subscript 0 2 𝑏 𝑡 superscript 𝑡 2 𝑎 𝑡 superscript 4 𝑎 1 Euler-Beta 𝑎 𝑏 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\cosh\left(2bt\right)}{(% \cosh t)^{2a}}\mathrm{d}t=4^{a-1}\mathrm{B}\left(a+b,a-b\right)}}
\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b}
a > | b | , ( a + b ) > 0 , ( a - b ) > 0 , ( ( a + b ) + b ) > 0 , ( a + ( a - b ) ) > 0 formulae-sequence 𝑎 𝑏 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 𝑏 𝑏 0 𝑎 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>|\Re b|,\Re(a+b)>0,\Re(a-b)>0,\Re((a+b)+b)>0% ,\Re(a+(a-b))>0}}
int((cosh(2*b*t))/((cosh(t))^(2*a)), t = 0..infinity) = (4)^(a - 1)* Beta(a + b, a - b)
Integrate[Divide[Cosh[2*b*t],(Cosh[t])^(2*a)], {t, 0, Infinity}, GenerateConditions->None] == (4)^(a - 1)* Beta[a + b, a - b]
Failure Failure Successful [Tested: 6] Successful [Tested: 6]
5.12.E8 1 2 π - d t ( w + i t ) a ( z - i t ) b = ( w + z ) 1 - a - b ( a + b - 1 ) B ( a , b ) 1 2 𝜋 superscript subscript 𝑡 superscript 𝑤 𝑖 𝑡 𝑎 superscript 𝑧 𝑖 𝑡 𝑏 superscript 𝑤 𝑧 1 𝑎 𝑏 𝑎 𝑏 1 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\mathrm% {d}t}{(w+it)^{a}(z-it)^{b}}=\frac{(w+z)^{1-a-b}}{(a+b-1)\mathrm{B}\left(a,b% \right)}}}
\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}}
( a + b ) > 1 , w > 0 , z > 0 , a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 𝑏 1 formulae-sequence 𝑤 0 formulae-sequence 𝑧 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re\left(a+b\right)>1,\Re w>0,\Re z>0,\Re a>0,\Re b% >0,\Re(a+b)>0}}
(1)/(2*Pi)*int((1)/((w + I*t)^(a)*(z - I*t)^(b)), t = - infinity..infinity) = ((w + z)^(1 - a - b))/((a + b - 1)*Beta(a, b))
Divide[1,2*Pi]*Integrate[Divide[1,(w + I*t)^(a)*(z - I*t)^(b)], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(w + z)^(1 - a - b),(a + b - 1)*Beta[a, b]]
Skipped - Unable to analyze test case: Null Failure - Successful [Tested: 250]
5.12.E9 1 2 π i c - i c + i t - a ( 1 - t ) - 1 - b d t = 1 b B ( a , b ) 1 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 superscript 𝑡 𝑎 superscript 1 𝑡 1 𝑏 𝑡 1 𝑏 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-% a}(1-t)^{-1-b}\mathrm{d}t=\frac{1}{b\mathrm{B}\left(a,b\right)}}}
\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}}
0 < c , c < 1 , ( a + b ) > 0 , a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 0 𝑐 formulae-sequence 𝑐 1 formulae-sequence 𝑎 𝑏 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle 0<c,c<1,\Re\left(a+b\right)>0,\Re a>0,\Re b>0,\Re% (a+b)>0}}
(1)/(2*Pi*I)*int((t)^(- a)*(1 - t)^(- 1 - b), t = c - infinity*I..c + infinity*I) = (1)/(b*Beta(a, b))
Divide[1,2*Pi*I]*Integrate[(t)^(- a)*(1 - t)^(- 1 - b), {t, c - Infinity*I, c + Infinity*I}, GenerateConditions->None] == Divide[1,b*Beta[a, b]]
Skipped - Unable to analyze test case: Null Aborted - Skipped - Because timed out
5.12.E10 1 2 π i 0 ( 1 + ) t a - 1 ( t - 1 ) b - 1 d t = sin ( π b ) π B ( a , b ) 1 2 𝜋 𝑖 superscript subscript 0 limit-from 1 superscript 𝑡 𝑎 1 superscript 𝑡 1 𝑏 1 𝑡 𝜋 𝑏 𝜋 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}% \mathrm{d}t=\frac{\sin\left(\pi b\right)}{\pi}\mathrm{B}\left(a,b\right)}}
\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
(1)/(2*Pi*I)*int((t)^(a - 1)*(t - 1)^(b - 1), t = 0..(1 +)) = (sin(Pi*b))/(Pi)*Beta(a, b)
Divide[1,2*Pi*I]*Integrate[(t)^(a - 1)*(t - 1)^(b - 1), {t, 0, (1 +)}, GenerateConditions->None] == Divide[Sin[Pi*b],Pi]*Beta[a, b]
Skipped - Unable to analyze test case: Null Failure - Error
5.12.E11 1 e 2 π i a - 1 ( 0 + ) t a - 1 ( 1 + t ) - a - b d t = B ( a , b ) 1 superscript 𝑒 2 𝜋 𝑖 𝑎 1 superscript subscript limit-from 0 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑎 𝑏 𝑡 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}% (1+t)^{-a-b}\mathrm{d}t=\mathrm{B}\left(a,b\right)}}
\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
(1)/(exp(2*Pi*I*a)- 1)*int((t)^(a - 1)*(1 + t)^(- a - b), t = infinity..(0 +)) = Beta(a, b)
Divide[1,Exp[2*Pi*I*a]- 1]*Integrate[(t)^(a - 1)*(1 + t)^(- a - b), {t, Infinity, (0 +)}, GenerateConditions->None] == Beta[a, b]
Error Failure - Error
5.12.E12 P ( 1 + , 0 + , 1 - , 0 - ) t a - 1 ( 1 - t ) b - 1 d t = - 4 e π i ( a + b ) sin ( π a ) sin ( π b ) B ( a , b ) superscript subscript 𝑃 limit-from 1 limit-from 0 limit-from 1 limit-from 0 superscript 𝑡 𝑎 1 superscript 1 𝑡 𝑏 1 𝑡 4 superscript 𝑒 𝜋 𝑖 𝑎 𝑏 𝜋 𝑎 𝜋 𝑏 Euler-Beta 𝑎 𝑏 {\displaystyle{\displaystyle\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\mathrm{% d}t=-4e^{\pi i(a+b)}\sin\left(\pi a\right)\sin\left(\pi b\right)\mathrm{B}% \left(a,b\right)}}
\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b}
a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle\Re a>0,\Re b>0,\Re(a+b)>0}}
int((t)^(a - 1)*(1 - t)^(b - 1), t = P..(1 + , 0 + , 1 - , 0 -)) = - 4*exp(Pi*I*(a + b))*sin(Pi*a)*sin(Pi*b)*Beta(a, b)
Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, P, (1 + , 0 + , 1 - , 0 -)}, GenerateConditions->None] == - 4*Exp[Pi*I*(a + b)]*Sin[Pi*a]*Sin[Pi*b]*Beta[a, b]
Error Failure - Error