7.7: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E1 7.7.E1] | | | [https://dlmf.nist.gov/7.7.E1 7.7.E1] || <math qid="Q2371">\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 4] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E2 7.7.E2] | | | [https://dlmf.nist.gov/7.7.E2 7.7.E2] || <math qid="Q2372">\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2137917882+.3702982391*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .572853371e-1-.2137917880*I | Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .572853371e-1-.2137917880*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 1] | Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E3 7.7.E3] | | | [https://dlmf.nist.gov/7.7.E3 7.7.E3] || <math qid="Q2373">\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E4 7.7.E4] | | | [https://dlmf.nist.gov/7.7.E4 7.7.E4] || <math qid="Q2374">\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E5 7.7.E5] | | | [https://dlmf.nist.gov/7.7.E5 7.7.E5] || <math qid="Q2375">\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2))</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E6 7.7.E6] | | | [https://dlmf.nist.gov/7.7.E6 7.7.E6] || <math qid="Q2376">\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/a)*erfc(sqrt(a)*x +(b)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 300] || Successful [Tested: 300] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E7 7.7.E7] | | | [https://dlmf.nist.gov/7.7.E7 7.7.E7] || <math qid="Q2377">\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</syntaxhighlight> || <math>x > 0, |\phase@@{a}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/x))+ exp(- 2*a*b)*erfc(a*x -(b/x)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/x)])</syntaxhighlight> || Failure || Aborted || Successful [Tested: 54] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E8 7.7.E8] | | | [https://dlmf.nist.gov/7.7.E8 7.7.E8] || <math qid="Q2378">\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</syntaxhighlight> || <math>|\phase@@{a}| < \tfrac{1}{4}\pi, |\phase@@{b}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E9 7.7.E9] | | | [https://dlmf.nist.gov/7.7.E9 7.7.E9] || <math qid="Q2379">\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E10 7.7.E10] | | | [https://dlmf.nist.gov/7.7.E10 7.7.E10] || <math qid="Q2380">\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E11 7.7.E11] | | | [https://dlmf.nist.gov/7.7.E11 7.7.E11] || <math qid="Q2381">\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/2))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E12 7.7.E12] | | | [https://dlmf.nist.gov/7.7.E12 7.7.E12] || <math qid="Q2382">\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/2)*int(exp(Pi*I*(t)^(2)/2), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/2]*Integrate[Exp[Pi*I*(t)^(2)/2], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1740270274183789, -0.23657015577401255] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.17402702741837872, 0.2365701557740125] | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.17402702741837872, 0.2365701557740125] | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br></div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br></div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E13 7.7.E13] | | | [https://dlmf.nist.gov/7.7.E13 7.7.E13] || <math qid="Q2383">\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{3}{4})} > 0, \realpart@@{(\tfrac{1}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I | ||
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I | Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I | ||
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E14 7.7.E14] | | | [https://dlmf.nist.gov/7.7.E14 7.7.E14] || <math qid="Q2384">\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{1}{4})} > 0, \realpart@@{(\tfrac{3}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I | ||
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I | Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I | ||
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E15 7.7.E15] | | | [https://dlmf.nist.gov/7.7.E15 7.7.E15] || <math qid="Q2385">\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3] | ||
|- | |- | ||
| [https://dlmf.nist.gov/7.7.E16 7.7.E16] | | | [https://dlmf.nist.gov/7.7.E16 7.7.E16] || <math qid="Q2386">\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:15, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.7.E1 | \erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t} |
erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity)
|
Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 4] | |
7.7.E2 | \frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}} |
|
(1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity)
|
Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [7 / 7] Result: .2137917882+.3702982391*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}
Result: .572853371e-1-.2137917880*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}
... skip entries to safe data |
Successful [Tested: 1] |
7.7.E3 | \int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}} |
int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a)))
|
Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]]
|
Failure | Successful | Successful [Tested: 21] | Successful [Tested: 21] | |
7.7.E4 | \int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z} |
int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z)
|
Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z]
|
Successful | Successful | - | Successful [Tested: 15] | |
7.7.E5 | \int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right) |
int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2))
|
Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2))
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
7.7.E6 | \int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}} |
int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/a)*erfc(sqrt(a)*x +(b)/(sqrt(a)))
|
Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]]
|
Failure | Successful | Successful [Tested: 300] | Successful [Tested: 300] | |
7.7.E7 | \int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right) |
int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/x))+ exp(- 2*a*b)*erfc(a*x -(b/x)))
|
Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/x)])
|
Failure | Aborted | Successful [Tested: 54] | Skipped - Because timed out | |
7.7.E8 | \int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab} |
int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b)
|
Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b]
|
Successful | Successful | - | Successful [Tested: 9] | |
7.7.E9 | \int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right) |
|
int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1)
|
Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1)
|
Successful | Successful | - | Successful [Tested: 3] |
7.7.E10 | \auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t} |
Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity)
|
FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 4] | Successful [Tested: 4] | |
7.7.E11 | \auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t} |
Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/2))/((t)^(2)+ 1), t = 0..infinity)
|
FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 4] | Successful [Tested: 4] | |
7.7.E12 | \auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t} |
|
Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/2)*int(exp(Pi*I*(t)^(2)/2), t = z..infinity)
|
FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/2]*Integrate[Exp[Pi*I*(t)^(2)/2], {t, z, Infinity}, GenerateConditions->None]
|
Successful | Failure | - | Failed [2 / 7]
Result: Complex[0.1740270274183789, -0.23657015577401255]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.17402702741837872, 0.2365701557740125]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
|
7.7.E13 | \auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s} |
Fresnelf(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity)
|
FresnelF[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [300 / 300] Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}
Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Skipped - Because timed out | |
7.7.E14 | \auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s} |
Fresnelg(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity)
|
FresnelG[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
|
Failure | Aborted | Failed [300 / 300] Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}
Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Skipped - Because timed out | |
7.7.E15 | \int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}} |
int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi)))
|
Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]]
|
Successful | Aborted | - | Successful [Tested: 3] | |
7.7.E16 | \int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}} |
int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi)))
|
Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]]
|
Successful | Aborted | - | Successful [Tested: 3] |