7.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/7.7.E1 7.7.E1] || [[Item:Q2371|<math>\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 4]
| [https://dlmf.nist.gov/7.7.E1 7.7.E1] || <math qid="Q2371">\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E2 7.7.E2] || [[Item:Q2372|<math>\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2137917882+.3702982391*I
| [https://dlmf.nist.gov/7.7.E2 7.7.E2] || <math qid="Q2372">\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2137917882+.3702982391*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .572853371e-1-.2137917880*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .572853371e-1-.2137917880*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 1]
Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E3 7.7.E3] || [[Item:Q2373|<math>\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/7.7.E3 7.7.E3] || <math qid="Q2373">\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E4 7.7.E4] || [[Item:Q2374|<math>\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
| [https://dlmf.nist.gov/7.7.E4 7.7.E4] || <math qid="Q2374">\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}</syntaxhighlight> || <math>\realpart@@{a} > 0, \realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 15]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E5 7.7.E5] || [[Item:Q2375|<math>\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2))</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.7.E5 7.7.E5] || <math qid="Q2375">\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2))</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E6 7.7.E6] || [[Item:Q2376|<math>\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/a)*erfc(sqrt(a)*x +(b)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 300] || Successful [Tested: 300]
| [https://dlmf.nist.gov/7.7.E6 7.7.E6] || <math qid="Q2376">\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/a)*erfc(sqrt(a)*x +(b)/(sqrt(a)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 300] || Successful [Tested: 300]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E7 7.7.E7] || [[Item:Q2377|<math>\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</syntaxhighlight> || <math>x > 0, |\phase@@{a}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/x))+ exp(- 2*a*b)*erfc(a*x -(b/x)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/x)])</syntaxhighlight> || Failure || Aborted || Successful [Tested: 54] || Skipped - Because timed out
| [https://dlmf.nist.gov/7.7.E7 7.7.E7] || <math qid="Q2377">\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)</syntaxhighlight> || <math>x > 0, |\phase@@{a}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/x))+ exp(- 2*a*b)*erfc(a*x -(b/x)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/x)])</syntaxhighlight> || Failure || Aborted || Successful [Tested: 54] || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/7.7.E8 7.7.E8] || [[Item:Q2378|<math>\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</syntaxhighlight> || <math>|\phase@@{a}| < \tfrac{1}{4}\pi, |\phase@@{b}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/7.7.E8 7.7.E8] || <math qid="Q2378">\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}</syntaxhighlight> || <math>|\phase@@{a}| < \tfrac{1}{4}\pi, |\phase@@{b}| < \tfrac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E9 7.7.E9] || [[Item:Q2379|<math>\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.7.E9 7.7.E9] || <math qid="Q2379">\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1)</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E10 7.7.E10] || [[Item:Q2380|<math>\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4]
| [https://dlmf.nist.gov/7.7.E10 7.7.E10] || <math qid="Q2380">\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E11 7.7.E11] || [[Item:Q2381|<math>\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/2))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4]
| [https://dlmf.nist.gov/7.7.E11 7.7.E11] || <math qid="Q2381">\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| \leq \frac{1}{4}\pi</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/2))/((t)^(2)+ 1), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Successful || Successful [Tested: 4] || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E12 7.7.E12] || [[Item:Q2382|<math>\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/2)*int(exp(Pi*I*(t)^(2)/2), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/2]*Integrate[Exp[Pi*I*(t)^(2)/2], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1740270274183789, -0.23657015577401255]
| [https://dlmf.nist.gov/7.7.E12 7.7.E12] || <math qid="Q2382">\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/2)*int(exp(Pi*I*(t)^(2)/2), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/2]*Integrate[Exp[Pi*I*(t)^(2)/2], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.1740270274183789, -0.23657015577401255]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.17402702741837872, 0.2365701557740125]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.17402702741837872, 0.2365701557740125]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.7.E13 7.7.E13] || [[Item:Q2383|<math>\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{3}{4})} > 0, \realpart@@{(\tfrac{1}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I
| [https://dlmf.nist.gov/7.7.E13 7.7.E13] || <math qid="Q2383">\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{3}{4})} > 0, \realpart@@{(\tfrac{1}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelf(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelF[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/7.7.E14 7.7.E14] || [[Item:Q2384|<math>\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{1}{4})} > 0, \realpart@@{(\tfrac{3}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I
| [https://dlmf.nist.gov/7.7.E14 7.7.E14] || <math qid="Q2384">\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}</syntaxhighlight> || <math>\realpart@@{s} > 0, \realpart@@{(s+\tfrac{1}{2})} > 0, \realpart@@{(s+\tfrac{1}{4})} > 0, \realpart@@{(\tfrac{3}{4}-s)} > 0</math> || <syntaxhighlight lang=mathematica>Fresnelg(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>FresnelG[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/7.7.E15 7.7.E15] || [[Item:Q2385|<math>\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.7.E15 7.7.E15] || <math qid="Q2385">\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.7.E16 7.7.E16] || [[Item:Q2386|<math>\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.7.E16 7.7.E16] || <math qid="Q2386">\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}</syntaxhighlight> || <math>\realpart@@{a} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 11:15, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.7.E1 erfc z = 2 π e - z 2 0 e - z 2 t 2 t 2 + 1 d t complementary-error-function 𝑧 2 𝜋 superscript 𝑒 superscript 𝑧 2 superscript subscript 0 superscript 𝑒 superscript 𝑧 2 superscript 𝑡 2 superscript 𝑡 2 1 𝑡 {\displaystyle{\displaystyle\operatorname{erfc}z=\frac{2}{\pi}e^{-z^{2}}\int_{% 0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\mathrm{d}t}}
\erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}
| ph z | 1 4 π phase 𝑧 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\frac{1}{4}\pi}}
erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity)
Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 4]
7.7.E2 1 π i - e - t 2 d t t - z = 2 z π i 0 e - t 2 d t t 2 - z 2 1 𝜋 𝑖 superscript subscript superscript 𝑒 superscript 𝑡 2 𝑡 𝑡 𝑧 2 𝑧 𝜋 𝑖 superscript subscript 0 superscript 𝑒 superscript 𝑡 2 𝑡 superscript 𝑡 2 superscript 𝑧 2 {\displaystyle{\displaystyle\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^% {2}}\mathrm{d}t}{t-z}=\frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\mathrm% {d}t}{t^{2}-z^{2}}}}
\frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}

(1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity)
Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 7]
Result: .2137917882+.3702982391*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = I}

Result: .572853371e-1-.2137917880*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = I}

... skip entries to safe data
Successful [Tested: 1]
7.7.E3 0 e - a t 2 + 2 i z t d t = 1 2 π a e - z 2 / a + i a F ( z a ) superscript subscript 0 superscript 𝑒 𝑎 superscript 𝑡 2 2 𝑖 𝑧 𝑡 𝑡 1 2 𝜋 𝑎 superscript 𝑒 superscript 𝑧 2 𝑎 𝑖 𝑎 Dawsons-integral 𝑧 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at^{2}+2izt}\mathrm{d}t=\frac% {1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}F\left(\frac{z}{\sqrt% {a}}\right)}}
\int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a)))
Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]]
Failure Successful Successful [Tested: 21] Successful [Tested: 21]
7.7.E4 0 e - a t t + z 2 d t = π a e a z 2 erfc ( a z ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 𝑡 superscript 𝑧 2 𝑡 𝜋 𝑎 superscript 𝑒 𝑎 superscript 𝑧 2 complementary-error-function 𝑎 𝑧 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}% \mathrm{d}t=\sqrt{\frac{\pi}{a}}e^{az^{2}}\operatorname{erfc}\left(\sqrt{a}z% \right)}}
\int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}
a > 0 , z > 0 formulae-sequence 𝑎 0 𝑧 0 {\displaystyle{\displaystyle\Re a>0,\Re z>0}}
int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z)
Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z]
Successful Successful - Successful [Tested: 15]
7.7.E5 0 1 e - a t 2 t 2 + 1 d t = π 4 e a ( 1 - ( erf a ) 2 ) superscript subscript 0 1 superscript 𝑒 𝑎 superscript 𝑡 2 superscript 𝑡 2 1 𝑡 𝜋 4 superscript 𝑒 𝑎 1 superscript error-function 𝑎 2 {\displaystyle{\displaystyle\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\mathrm{d}t% =\frac{\pi}{4}e^{a}\left(1-(\operatorname{erf}\sqrt{a})^{2}\right)}}
\int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2))
Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2))
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.7.E6 x e - ( a t 2 + 2 b t + c ) d t = 1 2 π a e ( b 2 - a c ) / a erfc ( a x + b a ) superscript subscript 𝑥 superscript 𝑒 𝑎 superscript 𝑡 2 2 𝑏 𝑡 𝑐 𝑡 1 2 𝜋 𝑎 superscript 𝑒 superscript 𝑏 2 𝑎 𝑐 𝑎 complementary-error-function 𝑎 𝑥 𝑏 𝑎 {\displaystyle{\displaystyle\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\mathrm{d}t=% \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\operatorname{erfc}\left(\sqrt{% a}x+\frac{b}{\sqrt{a}}\right)}}
\int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/a)*erfc(sqrt(a)*x +(b)/(sqrt(a)))
Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]]
Failure Successful Successful [Tested: 300] Successful [Tested: 300]
7.7.E7 x e - a 2 t 2 - ( b 2 / t 2 ) d t = π 4 a ( e 2 a b erfc ( a x + ( b / x ) ) + e - 2 a b erfc ( a x - ( b / x ) ) ) superscript subscript 𝑥 superscript 𝑒 superscript 𝑎 2 superscript 𝑡 2 superscript 𝑏 2 superscript 𝑡 2 𝑡 𝜋 4 𝑎 superscript 𝑒 2 𝑎 𝑏 complementary-error-function 𝑎 𝑥 𝑏 𝑥 superscript 𝑒 2 𝑎 𝑏 complementary-error-function 𝑎 𝑥 𝑏 𝑥 {\displaystyle{\displaystyle\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}% \mathrm{d}t=\frac{\sqrt{\pi}}{4a}\left(e^{2ab}\operatorname{erfc}\left(ax+(b/x% )\right)+e^{-2ab}\operatorname{erfc}\left(ax-(b/x)\right)\right)}}
\int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)
x > 0 , | ph a | < 1 4 π formulae-sequence 𝑥 0 phase 𝑎 1 4 𝜋 {\displaystyle{\displaystyle x>0,|\operatorname{ph}a|<\tfrac{1}{4}\pi}}
int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/x))+ exp(- 2*a*b)*erfc(a*x -(b/x)))
Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/x)])
Failure Aborted Successful [Tested: 54] Skipped - Because timed out
7.7.E8 0 e - a 2 t 2 - ( b 2 / t 2 ) d t = π 2 a e - 2 a b superscript subscript 0 superscript 𝑒 superscript 𝑎 2 superscript 𝑡 2 superscript 𝑏 2 superscript 𝑡 2 𝑡 𝜋 2 𝑎 superscript 𝑒 2 𝑎 𝑏 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}% \mathrm{d}t=\frac{\sqrt{\pi}}{2a}e^{-2ab}}}
\int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}
| ph a | < 1 4 π , | ph b | < 1 4 π formulae-sequence phase 𝑎 1 4 𝜋 phase 𝑏 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}a|<\tfrac{1}{4}\pi,|% \operatorname{ph}b|<\tfrac{1}{4}\pi}}
int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b)
Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/(t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b]
Successful Successful - Successful [Tested: 9]
7.7.E9 0 x erf t d t = x erf x + 1 π ( e - x 2 - 1 ) superscript subscript 0 𝑥 error-function 𝑡 𝑡 𝑥 error-function 𝑥 1 𝜋 superscript 𝑒 superscript 𝑥 2 1 {\displaystyle{\displaystyle\int_{0}^{x}\operatorname{erf}t\mathrm{d}t=x% \operatorname{erf}x+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)}}
\int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)

int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1)
Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1)
Successful Successful - Successful [Tested: 3]
7.7.E10 f ( z ) = 1 π 2 0 e - π z 2 t / 2 t ( t 2 + 1 ) d t Fresnel-auxilliary-function-f 𝑧 1 𝜋 2 superscript subscript 0 superscript 𝑒 𝜋 superscript 𝑧 2 𝑡 2 𝑡 superscript 𝑡 2 1 𝑡 {\displaystyle{\displaystyle\mathrm{f}\left(z\right)=\frac{1}{\pi\sqrt{2}}\int% _{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\mathrm{d}t}}
\auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}
| ph z | 1 4 π phase 𝑧 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\frac{1}{4}\pi}}
Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity)
FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 4] Successful [Tested: 4]
7.7.E11 g ( z ) = 1 π 2 0 t e - π z 2 t / 2 t 2 + 1 d t Fresnel-auxilliary-function-g 𝑧 1 𝜋 2 superscript subscript 0 𝑡 superscript 𝑒 𝜋 superscript 𝑧 2 𝑡 2 superscript 𝑡 2 1 𝑡 {\displaystyle{\displaystyle\mathrm{g}\left(z\right)=\frac{1}{\pi\sqrt{2}}\int% _{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\mathrm{d}t}}
\auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}
| ph z | 1 4 π phase 𝑧 1 4 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\frac{1}{4}\pi}}
Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/2))/((t)^(2)+ 1), t = 0..infinity)
FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 4] Successful [Tested: 4]
7.7.E12 g ( z ) + i f ( z ) = e - π i z 2 / 2 z e π i t 2 / 2 d t Fresnel-auxilliary-function-g 𝑧 𝑖 Fresnel-auxilliary-function-f 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑧 2 2 superscript subscript 𝑧 superscript 𝑒 𝜋 𝑖 superscript 𝑡 2 2 𝑡 {\displaystyle{\displaystyle\mathrm{g}\left(z\right)+i\mathrm{f}\left(z\right)% =e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\mathrm{d}t}}
\auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}

Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/2)*int(exp(Pi*I*(t)^(2)/2), t = z..infinity)
FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/2]*Integrate[Exp[Pi*I*(t)^(2)/2], {t, z, Infinity}, GenerateConditions->None]
Successful Failure -
Failed [2 / 7]
Result: Complex[0.1740270274183789, -0.23657015577401255]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.17402702741837872, 0.2365701557740125]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

7.7.E13 f ( z ) = ( 2 π ) - 3 / 2 2 π i c - i c + i ζ - s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 3 4 ) Γ ( 1 4 - s ) d s Fresnel-auxilliary-function-f 𝑧 superscript 2 𝜋 3 2 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 superscript 𝜁 𝑠 Euler-Gamma 𝑠 Euler-Gamma 𝑠 1 2 Euler-Gamma 𝑠 3 4 Euler-Gamma 1 4 𝑠 𝑠 {\displaystyle{\displaystyle\mathrm{f}\left(z\right)=\frac{(2\pi)^{-3/2}}{2\pi i% }\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\Gamma\left(s\right)\Gamma\left(s+% \tfrac{1}{2}\right)\*\Gamma\left(s+\tfrac{3}{4}\right)\Gamma\left(\tfrac{1}{4}% -s\right)\mathrm{d}s}}
\auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}
s > 0 , ( s + 1 2 ) > 0 , ( s + 3 4 ) > 0 , ( 1 4 - s ) > 0 formulae-sequence 𝑠 0 formulae-sequence 𝑠 1 2 0 formulae-sequence 𝑠 3 4 0 1 4 𝑠 0 {\displaystyle{\displaystyle\Re s>0,\Re(s+\tfrac{1}{2})>0,\Re(s+\tfrac{3}{4})>% 0,\Re(\tfrac{1}{4}-s)>0}}
Fresnelf(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity)
FresnelF[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [300 / 300]
Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}

Result: .2811902531-.108667706*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
7.7.E14 g ( z ) = ( 2 π ) - 3 / 2 2 π i c - i c + i ζ - s Γ ( s ) Γ ( s + 1 2 ) Γ ( s + 1 4 ) Γ ( 3 4 - s ) d s Fresnel-auxilliary-function-g 𝑧 superscript 2 𝜋 3 2 2 𝜋 𝑖 superscript subscript 𝑐 𝑖 𝑐 𝑖 superscript 𝜁 𝑠 Euler-Gamma 𝑠 Euler-Gamma 𝑠 1 2 Euler-Gamma 𝑠 1 4 Euler-Gamma 3 4 𝑠 𝑠 {\displaystyle{\displaystyle\mathrm{g}\left(z\right)=\frac{(2\pi)^{-3/2}}{2\pi i% }\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\Gamma\left(s\right)\Gamma\left(s+% \tfrac{1}{2}\right)\*\Gamma\left(s+\tfrac{1}{4}\right)\Gamma\left(\tfrac{3}{4}% -s\right)\mathrm{d}s}}
\auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}
s > 0 , ( s + 1 2 ) > 0 , ( s + 1 4 ) > 0 , ( 3 4 - s ) > 0 formulae-sequence 𝑠 0 formulae-sequence 𝑠 1 2 0 formulae-sequence 𝑠 1 4 0 3 4 𝑠 0 {\displaystyle{\displaystyle\Re s>0,\Re(s+\tfrac{1}{2})>0,\Re(s+\tfrac{1}{4})>% 0,\Re(\tfrac{3}{4}-s)>0}}
Fresnelg(z) = ((2*Pi)^(- 3/2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity)
FresnelG[z] == Divide[(2*Pi)^(- 3/2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
Failure Aborted
Failed [300 / 300]
Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}

Result: .39257720e-1-.645221857e-1*I
Test Values: {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Skipped - Because timed out
7.7.E15 0 e - a t cos ( t 2 ) d t = π 2 f ( a 2 π ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 superscript 𝑡 2 𝑡 𝜋 2 Fresnel-auxilliary-function-f 𝑎 2 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}\cos\left(t^{2}\right)% \mathrm{d}t=\sqrt{\frac{\pi}{2}}\mathrm{f}\left(\frac{a}{\sqrt{2\pi}}\right)}}
\int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi)))
Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]]
Successful Aborted - Successful [Tested: 3]
7.7.E16 0 e - a t sin ( t 2 ) d t = π 2 g ( a 2 π ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 superscript 𝑡 2 𝑡 𝜋 2 Fresnel-auxilliary-function-g 𝑎 2 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}\sin\left(t^{2}\right)% \mathrm{d}t=\sqrt{\frac{\pi}{2}}\mathrm{g}\left(\frac{a}{\sqrt{2\pi}}\right)}}
\int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}
a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi)))
Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]]
Successful Aborted - Successful [Tested: 3]