7.8: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/7.8.E1 7.8.E1] || [[Item:Q2387|<math>\MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] == Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.2849976548947546, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E1 7.8.E1] || <math qid="Q2387">\MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] == Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[-0.2849976548947546, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.545641360765047, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[-0.545641360765047, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E1 7.8.E1] || [[Item:Q2387|<math>\frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2))) = exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] == Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.8.E1 7.8.E1] || <math qid="Q2387">\frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2))) = exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] == Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.8.E2 7.8.E2] || [[Item:Q2388|<math>\frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,x +Sqrt[(x)^(2)+ 2]] < Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[0.28077640640441515, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E2 7.8.E2] || <math qid="Q2388">\frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,x +Sqrt[(x)^(2)+ 2]] < Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[0.28077640640441515, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[0.5, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[0.5, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E2 7.8.E2] || [[Item:Q2388|<math>\MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] <= Divide[1,x +Sqrt[(x)^(2)+(4/Pi)]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E2 7.8.E2] || <math qid="Q2388">\MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] <= Divide[1,x +Sqrt[(x)^(2)+(4/Pi)]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2961182351849971], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2961182351849971], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5766361194388748], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5766361194388748], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E3 7.8.E3] || [[Item:Q2389|<math>\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sqrt[Pi],2*Sqrt[Pi]*x + 2] <= Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[0.24222581297045487, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E3 7.8.E3] || <math qid="Q2389">\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[Sqrt[Pi],2*Sqrt[Pi]*x + 2] <= Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[0.24222581297045487, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[0.46984109573138116, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[0.46984109573138116, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E3 7.8.E3] || [[Item:Q2389|<math>\MillsM@{x} < \frac{1}{x+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} < \frac{1}{x+1}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[1,x + 1]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E3 7.8.E3] || <math qid="Q2389">\MillsM@{x} < \frac{1}{x+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} < \frac{1}{x+1}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[1,x + 1]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.4], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.4], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.6666666666666666], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.6666666666666666], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E4 7.8.E4] || [[Item:Q2390|<math>\MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}</syntaxhighlight> || <math>x > -\tfrac{1}{2}\sqrt{2}</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2,3*x +Sqrt[(x)^(2)+ 4]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E4 7.8.E4] || <math qid="Q2390">\MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}</syntaxhighlight> || <math>x > -\tfrac{1}{2}\sqrt{2}</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2,3*x +Sqrt[(x)^(2)+ 4]]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2857142857142857], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2857142857142857], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5615528128088303], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5615528128088303], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || [[Item:Q2391|<math>\frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>((x)^(2))/(2*(x)^(2)+ 1) <= ((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(x)^(2),2*(x)^(2)+ 1] <= Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || <math qid="Q2391">\frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>((x)^(2))/(2*(x)^(2)+ 1) <= ((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(x)^(2),2*(x)^(2)+ 1] <= Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || [[Item:Q2391|<math>\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] <= x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[0.4253731343283582, Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || <math qid="Q2391">\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] <= x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: LessEqual[0.4253731343283582, Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[0.22, Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: LessEqual[0.22, Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || [[Item:Q2391|<math>x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || <math qid="Q2391">x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15]</syntaxhighlight> || Missing Macro Error || Failure || Skip - symbolical successful subtest || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Less[Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.42834890965732086], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.42834890965732086], {Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Less[Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.31481481481481477], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.31481481481481477], {Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || [[Item:Q2391|<math>\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>(2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15) < ((x)^(2)+ 1)/(2*(x)^(2)+ 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] < Divide[(x)^(2)+ 1,2*(x)^(2)+ 3]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.8.E5 7.8.E5] || <math qid="Q2391">\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}</syntaxhighlight> || <math>x \geq 0</math> || <syntaxhighlight lang=mathematica>(2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15) < ((x)^(2)+ 1)/(2*(x)^(2)+ 3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] < Divide[(x)^(2)+ 1,2*(x)^(2)+ 3]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.8.E6 7.8.E6] || [[Item:Q2392|<math>\int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)</syntaxhighlight> || <math>a > 0, x > 0</math> || <syntaxhighlight lang=mathematica>int(exp(a*(t)^(2)), t = 0..x) < (1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2)</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9]
| [https://dlmf.nist.gov/7.8.E6 7.8.E6] || <math qid="Q2392">\int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)</syntaxhighlight> || <math>a > 0, x > 0</math> || <syntaxhighlight lang=mathematica>int(exp(a*(t)^(2)), t = 0..x) < (1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[a*(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2)</syntaxhighlight> || Error || Failure || - || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/7.8.E7 7.8.E7] || [[Item:Q2393|<math>\int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>int(exp((t)^(2)), t = 0..x) < (exp((x)^(2))- 1)/(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[Exp[(x)^(2)]- 1,x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.8.E7 7.8.E7] || <math qid="Q2393">\int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>int(exp((t)^(2)), t = 0..x) < (exp((x)^(2))- 1)/(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[Exp[(x)^(2)]- 1,x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/7.8.E8 7.8.E8] || [[Item:Q2394|<math>\erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>erf(x) < sqrt(1 - exp(- 4*(x)^(2)/Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[x] < Sqrt[1 - Exp[- 4*(x)^(2)/Pi]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/7.8.E8 7.8.E8] || <math qid="Q2394">\erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}</syntaxhighlight> || <math>x > 0</math> || <syntaxhighlight lang=mathematica>erf(x) < sqrt(1 - exp(- 4*(x)^(2)/Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Erf[x] < Sqrt[1 - Exp[- 4*(x)^(2)/Pi]]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 11:16, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.8.E1 𝖬 ( x ) = x e - t 2 d t e - x 2 Mills-ratio 𝑥 superscript subscript 𝑥 superscript 𝑒 superscript 𝑡 2 𝑡 superscript 𝑒 superscript 𝑥 2 {\displaystyle{\displaystyle\mathsf{M}\left(x\right)=\frac{\int_{x}^{\infty}e^% {-t^{2}}\mathrm{d}t}{e^{-x^{2}}}}}
\MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}

Error
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] == Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]]
Missing Macro Error Failure -
Failed [3 / 3]
Result: Plus[-0.2849976548947546, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}

Result: Plus[-0.545641360765047, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E1 x e - t 2 d t e - x 2 = e x 2 x e - t 2 d t superscript subscript 𝑥 superscript 𝑒 superscript 𝑡 2 𝑡 superscript 𝑒 superscript 𝑥 2 superscript 𝑒 superscript 𝑥 2 superscript subscript 𝑥 superscript 𝑒 superscript 𝑡 2 𝑡 {\displaystyle{\displaystyle\frac{\int_{x}^{\infty}e^{-t^{2}}\mathrm{d}t}{e^{-% x^{2}}}=e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\mathrm{d}t}}
\frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}

(int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2))) = exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity)
Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] == Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 3]
7.8.E2 1 x + x 2 + 2 < 𝖬 ( x ) 1 𝑥 superscript 𝑥 2 2 Mills-ratio 𝑥 {\displaystyle{\displaystyle\frac{1}{x+\sqrt{x^{2}+2}}<\mathsf{M}\left(x\right% )}}
\frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
Divide[1,x +Sqrt[(x)^(2)+ 2]] < Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
Missing Macro Error Failure -
Failed [3 / 3]
Result: Less[0.28077640640441515, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}

Result: Less[0.5, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E2 𝖬 ( x ) 1 x + x 2 + ( 4 / π ) Mills-ratio 𝑥 1 𝑥 superscript 𝑥 2 4 𝜋 {\displaystyle{\displaystyle\mathsf{M}\left(x\right)\leq\frac{1}{x+\sqrt{x^{2}% +(4/\pi)}}}}
\MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] <= Divide[1,x +Sqrt[(x)^(2)+(4/Pi)]]
Missing Macro Error Failure -
Failed [3 / 3]
Result: LessEqual[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2961182351849971], {Rule[x, 1.5]}

Result: LessEqual[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5766361194388748], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E3 π 2 π x + 2 𝖬 ( x ) 𝜋 2 𝜋 𝑥 2 Mills-ratio 𝑥 {\displaystyle{\displaystyle\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2}\leq\mathsf{M}% \left(x\right)}}
\frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
Divide[Sqrt[Pi],2*Sqrt[Pi]*x + 2] <= Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
Missing Macro Error Failure -
Failed [3 / 3]
Result: LessEqual[0.24222581297045487, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}

Result: LessEqual[0.46984109573138116, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E3 𝖬 ( x ) < 1 x + 1 Mills-ratio 𝑥 1 𝑥 1 {\displaystyle{\displaystyle\mathsf{M}\left(x\right)<\frac{1}{x+1}}}
\MillsM@{x} < \frac{1}{x+1}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[1,x + 1]
Missing Macro Error Failure -
Failed [3 / 3]
Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.4], {Rule[x, 1.5]}

Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.6666666666666666], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E4 𝖬 ( x ) < 2 3 x + x 2 + 4 Mills-ratio 𝑥 2 3 𝑥 superscript 𝑥 2 4 {\displaystyle{\displaystyle\mathsf{M}\left(x\right)<\frac{2}{3x+\sqrt{x^{2}+4% }}}}
\MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}
x > - 1 2 2 𝑥 1 2 2 {\displaystyle{\displaystyle x>-\tfrac{1}{2}\sqrt{2}}}
Error
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2,3*x +Sqrt[(x)^(2)+ 4]]
Missing Macro Error Failure -
Failed [3 / 3]
Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2857142857142857], {Rule[x, 1.5]}

Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5615528128088303], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E5 x 2 2 x 2 + 1 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 superscript 𝑥 2 2 superscript 𝑥 2 1 superscript 𝑥 2 2 superscript 𝑥 2 5 4 superscript 𝑥 4 12 superscript 𝑥 2 3 {\displaystyle{\displaystyle\frac{x^{2}}{2x^{2}+1}\leq\frac{x^{2}(2x^{2}+5)}{4% x^{4}+12x^{2}+3}}}
\frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
((x)^(2))/(2*(x)^(2)+ 1) <= ((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3)
Divide[(x)^(2),2*(x)^(2)+ 1] <= Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E5 x 2 ( 2 x 2 + 5 ) 4 x 4 + 12 x 2 + 3 x 𝖬 ( x ) superscript 𝑥 2 2 superscript 𝑥 2 5 4 superscript 𝑥 4 12 superscript 𝑥 2 3 𝑥 Mills-ratio 𝑥 {\displaystyle{\displaystyle\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}\leq x% \mathsf{M}\left(x\right)}}
\frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] <= x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [3 / 3]
Result: LessEqual[0.4253731343283582, Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}

Result: LessEqual[0.22, Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E5 x 𝖬 ( x ) < 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 𝑥 Mills-ratio 𝑥 2 superscript 𝑥 4 9 superscript 𝑥 2 4 4 superscript 𝑥 4 20 superscript 𝑥 2 15 {\displaystyle{\displaystyle x\mathsf{M}\left(x\right)<\frac{2x^{4}+9x^{2}+4}{% 4x^{4}+20x^{2}+15}}}
x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
Error
x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15]
Missing Macro Error Failure Skip - symbolical successful subtest
Failed [3 / 3]
Result: Less[Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.42834890965732086], {Rule[x, 1.5]}

Result: Less[Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.31481481481481477], {Rule[x, 0.5]}

... skip entries to safe data
7.8.E5 2 x 4 + 9 x 2 + 4 4 x 4 + 20 x 2 + 15 < x 2 + 1 2 x 2 + 3 2 superscript 𝑥 4 9 superscript 𝑥 2 4 4 superscript 𝑥 4 20 superscript 𝑥 2 15 superscript 𝑥 2 1 2 superscript 𝑥 2 3 {\displaystyle{\displaystyle\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}<\frac{x^% {2}+1}{2x^{2}+3}}}
\frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}
x 0 𝑥 0 {\displaystyle{\displaystyle x\geq 0}}
(2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15) < ((x)^(2)+ 1)/(2*(x)^(2)+ 3)
Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] < Divide[(x)^(2)+ 1,2*(x)^(2)+ 3]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E6 0 x e a t 2 d t < 1 3 a x ( 2 e a x 2 + a x 2 - 2 ) superscript subscript 0 𝑥 superscript 𝑒 𝑎 superscript 𝑡 2 𝑡 1 3 𝑎 𝑥 2 superscript 𝑒 𝑎 superscript 𝑥 2 𝑎 superscript 𝑥 2 2 {\displaystyle{\displaystyle\int_{0}^{x}e^{at^{2}}\mathrm{d}t<\frac{1}{3ax}% \left(2e^{ax^{2}}+ax^{2}-2\right)}}
\int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)
a > 0 , x > 0 formulae-sequence 𝑎 0 𝑥 0 {\displaystyle{\displaystyle a>0,x>0}}
int(exp(a*(t)^(2)), t = 0..x) < (1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2)
Integrate[Exp[a*(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2)
Error Failure - Successful [Tested: 9]
7.8.E7 0 x e t 2 d t < e x 2 - 1 x superscript subscript 0 𝑥 superscript 𝑒 superscript 𝑡 2 𝑡 superscript 𝑒 superscript 𝑥 2 1 𝑥 {\displaystyle{\displaystyle\int_{0}^{x}e^{t^{2}}\mathrm{d}t<\frac{e^{x^{2}}-1% }{x}}}
\int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
int(exp((t)^(2)), t = 0..x) < (exp((x)^(2))- 1)/(x)
Integrate[Exp[(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[Exp[(x)^(2)]- 1,x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E8 erf x < 1 - e - 4 x 2 / π error-function 𝑥 1 4 superscript 𝑥 2 {\displaystyle{\displaystyle\operatorname{erf}x<\sqrt{1-{\mathrm{e}^{-4x^{2}/% \pi}}}}}
\erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}
x > 0 𝑥 0 {\displaystyle{\displaystyle x>0}}
erf(x) < sqrt(1 - exp(- 4*(x)^(2)/Pi))
Erf[x] < Sqrt[1 - Exp[- 4*(x)^(2)/Pi]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]