8.18: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/8.18.E2 8.18.E2] || [[Item:Q2668|<math>\xi = -\ln@@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\xi = -\ln@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>xi = - ln(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Xi] == - Log[x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.271490512+.5000000000*I
| [https://dlmf.nist.gov/8.18.E2 8.18.E2] || <math qid="Q2668">\xi = -\ln@@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\xi = -\ln@@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>xi = - ln(x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Xi] == - Log[x]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.271490512+.5000000000*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.945348919e-1+.8660254040*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.945348919e-1+.8660254040*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.271490511892603, 0.49999999999999994]
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.271490511892603, 0.49999999999999994]
Line 20: Line 20:
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E4 8.18.E4] || [[Item:Q2670|<math>aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*F[k + 1] = (k + b - a*xi)*F[k]+ k*xi*F[k - 1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*Subscript[F, k + 1] == (k + b - a*\[Xi])*Subscript[F, k]+ k*\[Xi]*Subscript[F, k - 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E4 8.18.E4] || <math qid="Q2670">aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*F[k + 1] = (k + b - a*xi)*F[k]+ k*xi*F[k - 1]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a*Subscript[F, k + 1] == (k + b - a*\[Xi])*Subscript[F, k]+ k*\[Xi]*Subscript[F, k - 1]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/8.18#Ex1 8.18#Ex1] || [[Item:Q2671|<math>F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}</syntaxhighlight> || <math>\realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>F[0] = (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, 0] == (a)^(- b)* GammaRegularized[b, a*\[Xi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.253924788+1.407498490*I
| [https://dlmf.nist.gov/8.18#Ex1 8.18#Ex1] || <math qid="Q2671">F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}</syntaxhighlight> || <math>\realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>F[0] = (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, 0] == (a)^(- b)* GammaRegularized[b, a*\[Xi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.253924788+1.407498490*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1121006157+1.773523894*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.1121006157+1.773523894*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2539247882576399, 1.4074984905445393]
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.2539247882576399, 1.4074984905445393]
Line 28: Line 28:
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/8.18#Ex2 8.18#Ex2] || [[Item:Q2672|<math>F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>F[1] = (b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, 1] == Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[\[Xi]^(b)* Exp[- a*\[Xi]],a*Gamma[b]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.329643864+4.621882749*I
| [https://dlmf.nist.gov/8.18#Ex2 8.18#Ex2] || <math qid="Q2672">F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}</syntaxhighlight> || <math>\realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>F[1] = (b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[F, 1] == Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[\[Xi]^(b)* Exp[- a*\[Xi]],a*Gamma[b]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.329643864+4.621882749*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9636184598+4.987908153*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9636184598+4.987908153*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.32964386182885, 4.621882746395113]
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.32964386182885, 4.621882746395113]
Line 34: Line 34:
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E6 8.18.E6] || [[Item:Q2673|<math>\left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1 - exp(- t))/(t))^(b - 1) = sum(d[k]*(t - xi)^(k), k = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1 - Exp[- t],t])^(b - 1) == Sum[Subscript[d, k]*(t - \[Xi])^(k), {k, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E6 8.18.E6] || <math qid="Q2673">\left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">((1 - exp(- t))/(t))^(b - 1) = sum(d[k]*(t - xi)^(k), k = 0..infinity)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(Divide[1 - Exp[- t],t])^(b - 1) == Sum[Subscript[d, k]*(t - \[Xi])^(k), {k, 0, Infinity}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18#Ex3 8.18#Ex3] || [[Item:Q2674|<math>d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">d[0] = ((1 - x)/(xi))^(b - 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[d, 0] == (Divide[1 - x,\[Xi]])^(b - 1)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18#Ex3 8.18#Ex3] || <math qid="Q2674">d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">d[0] = ((1 - x)/(xi))^(b - 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[d, 0] == (Divide[1 - x,\[Xi]])^(b - 1)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18#Ex4 8.18#Ex4] || [[Item:Q2675|<math>d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">d[1] = (x*xi + x - 1)/((1 - x)*xi)*(b - 1)*d[0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[d, 1] == Divide[x*\[Xi]+ x - 1,(1 - x)*\[Xi]]*(b - 1)*Subscript[d, 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18#Ex4 8.18#Ex4] || <math qid="Q2675">d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">d[1] = (x*xi + x - 1)/((1 - x)*xi)*(b - 1)*d[0]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[d, 1] == Divide[x*\[Xi]+ x - 1,(1 - x)*\[Xi]]*(b - 1)*Subscript[d, 0]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E8 8.18.E8] || [[Item:Q2676|<math>x_{0} = a/(a+b)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{0} = a/(a+b)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[0] = a/(a + b)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 0] == a/(a + b)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E8 8.18.E8] || <math qid="Q2676">x_{0} = a/(a+b)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x_{0} = a/(a+b)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x[0] = a/(a + b)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[x, 0] == a/(a + b)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/8.18.E10 8.18.E10] || [[Item:Q2678|<math>-\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-(1)/(2)*(eta)^(2) = x[0]*ln((x)/(x[0]))+(1 - x[0])*ln((1 - x)/(1 - x[0]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[1,2]*\[Eta]^(2) == Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])*Log[Divide[1 - x,1 - Subscript[x, 0]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .580000474e-1+.458917392e-1*I
| [https://dlmf.nist.gov/8.18.E10 8.18.E10] || <math qid="Q2678">-\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>-\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>-(1)/(2)*(eta)^(2) = x[0]*ln((x)/(x[0]))+(1 - x[0])*ln((1 - x)/(1 - x[0]))</syntaxhighlight> || <syntaxhighlight lang=mathematica>-Divide[1,2]*\[Eta]^(2) == Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])*Log[Divide[1 - x,1 - Subscript[x, 0]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .580000474e-1+.458917392e-1*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.269862383+1.019641337*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.269862383+1.019641337*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.058000047924774145, 0.04589173995258988]
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.058000047924774145, 0.04589173995258988]
Line 48: Line 48:
Test Values: {Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E11 8.18.E11] || [[Item:Q2679|<math>c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0](eta) = (1)/(eta)-(sqrt(x[0]*(1 - x[0])))/(x - x[0])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0][\[Eta]] == Divide[1,\[Eta]]-Divide[Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])],x - Subscript[x, 0]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E11 8.18.E11] || <math qid="Q2679">c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0](eta) = (1)/(eta)-(sqrt(x[0]*(1 - x[0])))/(x - x[0])</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0][\[Eta]] == Divide[1,\[Eta]]-Divide[Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])],x - Subscript[x, 0]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E12 8.18.E12] || [[Item:Q2680|<math>c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0](0) = (1 - 2*x[0])/(3*sqrt(x[0]*(1 - x[0])))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0][0] == Divide[1 - 2*Subscript[x, 0],3*Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E12 8.18.E12] || <math qid="Q2680">c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">c[0](0) = (1 - 2*x[0])/(3*sqrt(x[0]*(1 - x[0])))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[c, 0][0] == Divide[1 - 2*Subscript[x, 0],3*Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/8.18.E15 8.18.E15] || [[Item:Q2683|<math>\mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)*ln(1 + mu)- mu</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Mu]*Log[\[Zeta]]- \[Zeta] == Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])*Log[1 + \[Mu]]- \[Mu]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .405976146-2.738439399*I
| [https://dlmf.nist.gov/8.18.E15 8.18.E15] || <math qid="Q2683">\mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)*ln(1 + mu)- mu</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Mu]*Log[\[Zeta]]- \[Zeta] == Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])*Log[1 + \[Mu]]- \[Mu]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .405976146-2.738439399*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9866033870-1.744115280*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .9866033870-1.744115280*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4059761460255107, -2.7384393975724306]
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [299 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4059761460255107, -2.7384393975724306]
Line 58: Line 58:
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E16 8.18.E16] || [[Item:Q2684|<math>h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h[0](zeta , mu) = mu*((1)/(zeta - mu)-((1 + mu)^(- 3/2))/(x[0]- x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[h, 0][\[Zeta], \[Mu]] == \[Mu]*(Divide[1,\[Zeta]- \[Mu]]-Divide[(1 + \[Mu])^(- 3/2),Subscript[x, 0]- x])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E16 8.18.E16] || <math qid="Q2684">h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h[0](zeta , mu) = mu*((1)/(zeta - mu)-((1 + mu)^(- 3/2))/(x[0]- x))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[h, 0][\[Zeta], \[Mu]] == \[Mu]*(Divide[1,\[Zeta]- \[Mu]]-Divide[(1 + \[Mu])^(- 3/2),Subscript[x, 0]- x])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/8.18.E17 8.18.E17] || [[Item:Q2685|<math>h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h[0](mu , mu) = (1)/(3)*((1 - mu)/(sqrt(1 + mu))- 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[h, 0][\[Mu], \[Mu]] == Divide[1,3]*(Divide[1 - \[Mu],Sqrt[1 + \[Mu]]]- 1)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/8.18.E17 8.18.E17] || <math qid="Q2685">h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">h[0](mu , mu) = (1)/(3)*((1 - mu)/(sqrt(1 + mu))- 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[h, 0][\[Mu], \[Mu]] == Divide[1,3]*(Divide[1 - \[Mu],Sqrt[1 + \[Mu]]]- 1)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/8.18.E18 8.18.E18] || [[Item:Q2686|<math>\normincBetaI{x}@{a}{b} = p</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\normincBetaI{x}@{a}{b} = p</syntaxhighlight> || <math>0 \leq p, p \leq 1, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BetaRegularized[x, a, b] == p</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [105 / 108]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/8.18.E18 8.18.E18] || <math qid="Q2686">\normincBetaI{x}@{a}{b} = p</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\normincBetaI{x}@{a}{b} = p</syntaxhighlight> || <math>0 \leq p, p \leq 1, \realpart@@{a} > 0, \realpart@@{b} > 0, \realpart@@{(a+b)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BetaRegularized[x, a, b] == p</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [105 / 108]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:19, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.18.E2 ξ = - ln x 𝜉 𝑥 {\displaystyle{\displaystyle\xi=-\ln x}}
\xi = -\ln@@{x}

xi = - ln(x)
\[Xi] == - Log[x]
Failure Failure
Failed [30 / 30]
Result: 1.271490512+.5000000000*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}

Result: -.945348919e-1+.8660254040*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[1.271490511892603, 0.49999999999999994]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.0945348918918354, 0.8660254037844387]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
8.18.E4 a F k + 1 = ( k + b - a ξ ) F k + k ξ F k - 1 𝑎 subscript 𝐹 𝑘 1 𝑘 𝑏 𝑎 𝜉 subscript 𝐹 𝑘 𝑘 𝜉 subscript 𝐹 𝑘 1 {\displaystyle{\displaystyle aF_{k+1}=(k+b-a\xi)F_{k}+k\xi F_{k-1}}}
aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1}

a*F[k + 1] = (k + b - a*xi)*F[k]+ k*xi*F[k - 1]
a*Subscript[F, k + 1] == (k + b - a*\[Xi])*Subscript[F, k]+ k*\[Xi]*Subscript[F, k - 1]
Skipped - no semantic math Skipped - no semantic math - -
8.18#Ex1 F 0 = a - b Q ( b , a ξ ) subscript 𝐹 0 superscript 𝑎 𝑏 incomplete-gamma-Q 𝑏 𝑎 𝜉 {\displaystyle{\displaystyle F_{0}=a^{-b}Q\left(b,a\xi\right)}}
F_{0} = a^{-b}\normincGammaQ@{b}{a\xi}
b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}}
F[0] = (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b)
Subscript[F, 0] == (a)^(- b)* GammaRegularized[b, a*\[Xi]]
Failure Failure
Failed [300 / 300]
Result: 1.253924788+1.407498490*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I}

Result: -.1121006157+1.773523894*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.2539247882576399, 1.4074984905445393]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.11210061552679867, 1.7735238943289782]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
8.18#Ex2 F 1 = b - a ξ a F 0 + ξ b e - a ξ a Γ ( b ) subscript 𝐹 1 𝑏 𝑎 𝜉 𝑎 subscript 𝐹 0 superscript 𝜉 𝑏 superscript 𝑒 𝑎 𝜉 𝑎 Euler-Gamma 𝑏 {\displaystyle{\displaystyle F_{1}=\frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi% }}{a\Gamma\left(b\right)}}}
F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}}
b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}}
F[1] = (b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b))
Subscript[F, 1] == Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[\[Xi]^(b)* Exp[- a*\[Xi]],a*Gamma[b]]
Failure Failure
Failed [300 / 300]
Result: 2.329643864+4.621882749*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = 1/2*3^(1/2)+1/2*I}

Result: .9636184598+4.987908153*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[2.32964386182885, 4.621882746395113]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.9636184580444114, 4.9879081501795515]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
8.18.E6 ( 1 - e - t t ) b - 1 = k = 0 d k ( t - ξ ) k superscript 1 superscript 𝑒 𝑡 𝑡 𝑏 1 superscript subscript 𝑘 0 subscript 𝑑 𝑘 superscript 𝑡 𝜉 𝑘 {\displaystyle{\displaystyle\left(\frac{1-e^{-t}}{t}\right)^{b-1}=\sum_{k=0}^{% \infty}d_{k}(t-\xi)^{k}}}
\left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k}

((1 - exp(- t))/(t))^(b - 1) = sum(d[k]*(t - xi)^(k), k = 0..infinity)
(Divide[1 - Exp[- t],t])^(b - 1) == Sum[Subscript[d, k]*(t - \[Xi])^(k), {k, 0, Infinity}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
8.18#Ex3 d 0 = ( 1 - x ξ ) b - 1 subscript 𝑑 0 superscript 1 𝑥 𝜉 𝑏 1 {\displaystyle{\displaystyle d_{0}=\left(\frac{1-x}{\xi}\right)^{b-1}}}
d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1}

d[0] = ((1 - x)/(xi))^(b - 1)
Subscript[d, 0] == (Divide[1 - x,\[Xi]])^(b - 1)
Skipped - no semantic math Skipped - no semantic math - -
8.18#Ex4 d 1 = x ξ + x - 1 ( 1 - x ) ξ ( b - 1 ) d 0 subscript 𝑑 1 𝑥 𝜉 𝑥 1 1 𝑥 𝜉 𝑏 1 subscript 𝑑 0 {\displaystyle{\displaystyle d_{1}=\frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}}}
d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0}

d[1] = (x*xi + x - 1)/((1 - x)*xi)*(b - 1)*d[0]
Subscript[d, 1] == Divide[x*\[Xi]+ x - 1,(1 - x)*\[Xi]]*(b - 1)*Subscript[d, 0]
Skipped - no semantic math Skipped - no semantic math - -
8.18.E8 x 0 = a / ( a + b ) subscript 𝑥 0 𝑎 𝑎 𝑏 {\displaystyle{\displaystyle x_{0}=a/(a+b)}}
x_{0} = a/(a+b)

x[0] = a/(a + b)
Subscript[x, 0] == a/(a + b)
Skipped - no semantic math Skipped - no semantic math - -
8.18.E10 - 1 2 η 2 = x 0 ln ( x x 0 ) + ( 1 - x 0 ) ln ( 1 - x 1 - x 0 ) 1 2 superscript 𝜂 2 subscript 𝑥 0 𝑥 subscript 𝑥 0 1 subscript 𝑥 0 1 𝑥 1 subscript 𝑥 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\eta^{2}=x_{0}\ln\left(\frac{x}{x_{0}% }\right)+(1-x_{0})\ln\left(\frac{1-x}{1-x_{0}}\right)}}
-\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}}

-(1)/(2)*(eta)^(2) = x[0]*ln((x)/(x[0]))+(1 - x[0])*ln((1 - x)/(1 - x[0]))
-Divide[1,2]*\[Eta]^(2) == Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])*Log[Divide[1 - x,1 - Subscript[x, 0]]]
Failure Failure
Failed [300 / 300]
Result: .580000474e-1+.458917392e-1*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = 1/2*3^(1/2)+1/2*I}

Result: 2.269862383+1.019641337*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.058000047924774145, 0.04589173995258988]
Test Values: {Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.2698623824536366, 1.0196413375539057]
Test Values: {Rule[x, 1.5], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
8.18.E11 c 0 ( η ) = 1 η - x 0 ( 1 - x 0 ) x - x 0 subscript 𝑐 0 𝜂 1 𝜂 subscript 𝑥 0 1 subscript 𝑥 0 𝑥 subscript 𝑥 0 {\displaystyle{\displaystyle c_{0}(\eta)=\frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_% {0})}}{x-x_{0}}}}
c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}}

c[0](eta) = (1)/(eta)-(sqrt(x[0]*(1 - x[0])))/(x - x[0])
Subscript[c, 0][\[Eta]] == Divide[1,\[Eta]]-Divide[Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])],x - Subscript[x, 0]]
Skipped - no semantic math Skipped - no semantic math - -
8.18.E12 c 0 ( 0 ) = 1 - 2 x 0 3 x 0 ( 1 - x 0 ) subscript 𝑐 0 0 1 2 subscript 𝑥 0 3 subscript 𝑥 0 1 subscript 𝑥 0 {\displaystyle{\displaystyle c_{0}(0)=\frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}}}
c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}}

c[0](0) = (1 - 2*x[0])/(3*sqrt(x[0]*(1 - x[0])))
Subscript[c, 0][0] == Divide[1 - 2*Subscript[x, 0],3*Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])]]
Skipped - no semantic math Skipped - no semantic math - -
8.18.E15 μ ln ζ - ζ = ln x + μ ln ( 1 - x ) + ( 1 + μ ) ln ( 1 + μ ) - μ 𝜇 𝜁 𝜁 𝑥 𝜇 1 𝑥 1 𝜇 1 𝜇 𝜇 {\displaystyle{\displaystyle\mu\ln\zeta-\zeta=\ln x+\mu\ln\left(1-x\right)+(1+% \mu)\ln\left(1+\mu\right)-\mu}}
\mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu

mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)*ln(1 + mu)- mu
\[Mu]*Log[\[Zeta]]- \[Zeta] == Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])*Log[1 + \[Mu]]- \[Mu]
Failure Failure
Failed [299 / 300]
Result: .405976146-2.738439399*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = 1/2*3^(1/2)+1/2*I}

Result: .9866033870-1.744115280*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [299 / 300]
Result: Complex[0.4059761460255107, -2.7384393975724306]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0560847852373059, 1.7517066341083583]
Test Values: {Rule[x, 1.5], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
8.18.E16 h 0 ( ζ , μ ) = μ ( 1 ζ - μ - ( 1 + μ ) - 3 / 2 x 0 - x ) subscript 0 𝜁 𝜇 𝜇 1 𝜁 𝜇 superscript 1 𝜇 3 2 subscript 𝑥 0 𝑥 {\displaystyle{\displaystyle h_{0}(\zeta,\mu)=\mu\left(\frac{1}{\zeta-\mu}-% \frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)}}
h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right)

h[0](zeta , mu) = mu*((1)/(zeta - mu)-((1 + mu)^(- 3/2))/(x[0]- x))
Subscript[h, 0][\[Zeta], \[Mu]] == \[Mu]*(Divide[1,\[Zeta]- \[Mu]]-Divide[(1 + \[Mu])^(- 3/2),Subscript[x, 0]- x])
Skipped - no semantic math Skipped - no semantic math - -
8.18.E17 h 0 ( μ , μ ) = 1 3 ( 1 - μ 1 + μ - 1 ) subscript 0 𝜇 𝜇 1 3 1 𝜇 1 𝜇 1 {\displaystyle{\displaystyle h_{0}(\mu,\mu)=\frac{1}{3}\left(\frac{1-\mu}{% \sqrt{1+\mu}}-1\right)}}
h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right)

h[0](mu , mu) = (1)/(3)*((1 - mu)/(sqrt(1 + mu))- 1)
Subscript[h, 0][\[Mu], \[Mu]] == Divide[1,3]*(Divide[1 - \[Mu],Sqrt[1 + \[Mu]]]- 1)
Skipped - no semantic math Skipped - no semantic math - -
8.18.E18 I x ( a , b ) = p IncI 𝑥 𝑎 𝑏 𝑝 {\displaystyle{\displaystyle I_{x}\left(a,b\right)=p}}
\normincBetaI{x}@{a}{b} = p
0 p , p 1 , a > 0 , b > 0 , ( a + b ) > 0 formulae-sequence 0 𝑝 formulae-sequence 𝑝 1 formulae-sequence 𝑎 0 formulae-sequence 𝑏 0 𝑎 𝑏 0 {\displaystyle{\displaystyle 0\leq p,p\leq 1,\Re a>0,\Re b>0,\Re(a+b)>0}}
Error
BetaRegularized[x, a, b] == p
Missing Macro Error Failure -
Failed [105 / 108]
Result: DirectedInfinity[]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 1.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 0.5]}

... skip entries to safe data