8.19: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/8.19.E1 8.19.E1] || [[Item:Q2687|<math>\genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E1 8.19.E1] || <math qid="Q2687">\genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E2 8.19.E2] || [[Item:Q2688|<math>\genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* int((exp(- t))/((t)^(p)), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Integrate[Divide[Exp[- t],(t)^(p)], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E2 8.19.E2] || <math qid="Q2688">\genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* int((exp(- t))/((t)^(p)), t = z..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Integrate[Divide[Exp[- t],(t)^(p)], {t, z, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E3 8.19.E3] || [[Item:Q2689|<math>\genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = int((exp(- z*t))/((t)^(p)), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Integrate[Divide[Exp[- z*t],(t)^(p)], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 50]
| [https://dlmf.nist.gov/8.19.E3 8.19.E3] || <math qid="Q2689">\genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = int((exp(- z*t))/((t)^(p)), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Integrate[Divide[Exp[- z*t],(t)^(p)], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 50]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E4 8.19.E4] || [[Item:Q2690|<math>\genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{p} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = ((z)^(p - 1)* exp(- z))/(GAMMA(p))*int(((t)^(p - 1)* exp(- z*t))/(1 + t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Divide[(z)^(p - 1)* Exp[- z],Gamma[p]]*Integrate[Divide[(t)^(p - 1)* Exp[- z*t],1 + t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 25]
| [https://dlmf.nist.gov/8.19.E4 8.19.E4] || <math qid="Q2690">\genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}</syntaxhighlight> || <math>|\phase@@{z}| < \tfrac{1}{2}\pi, \realpart@@{p} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = ((z)^(p - 1)* exp(- z))/(GAMMA(p))*int(((t)^(p - 1)* exp(- z*t))/(1 + t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Divide[(z)^(p - 1)* Exp[- z],Gamma[p]]*Integrate[Divide[(t)^(p - 1)* Exp[- z*t],1 + t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 25]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E5 8.19.E5] || [[Item:Q2691|<math>\genexpintE{0}@{z} = z^{-1}e^{-z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{0}@{z} = z^{-1}e^{-z}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>Ei(0, z) = (z)^(- 1)* exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[0, z] == (z)^(- 1)* Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/8.19.E5 8.19.E5] || <math qid="Q2691">\genexpintE{0}@{z} = z^{-1}e^{-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{0}@{z} = z^{-1}e^{-z}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>Ei(0, z) = (z)^(- 1)* exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[0, z] == (z)^(- 1)* Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E6 8.19.E6] || [[Item:Q2692|<math>\genexpintE{p}@{0} = \frac{1}{p-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{0} = \frac{1}{p-1}</syntaxhighlight> || <math>\realpart@@{p} > 1</math> || <syntaxhighlight lang=mathematica>Ei(p, 0) = (1)/(p - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, 0] == Divide[1,p - 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2]
| [https://dlmf.nist.gov/8.19.E6 8.19.E6] || <math qid="Q2692">\genexpintE{p}@{0} = \frac{1}{p-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{0} = \frac{1}{p-1}</syntaxhighlight> || <math>\realpart@@{p} > 1</math> || <syntaxhighlight lang=mathematica>Ei(p, 0) = (1)/(p - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, 0] == Divide[1,p - 1]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 2]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E7 8.19.E7] || [[Item:Q2693|<math>\genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(n, z) = ((- z)^(n - 1))/(factorial(n - 1))*Ei(z)+(exp(- z))/(factorial(n - 1))*sum(factorial(n - k - 2)*(- z)^(k), k = 0..n - 2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n, z] == Divide[(- z)^(n - 1),(n - 1)!]*ExpIntegralE[1, z]+Divide[Exp[- z],(n - 1)!]*Sum[(n - k - 2)!*(- z)^(k), {k, 0, n - 2}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.393548628-1.498247032*I
| [https://dlmf.nist.gov/8.19.E7 8.19.E7] || <math qid="Q2693">\genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(n, z) = ((- z)^(n - 1))/(factorial(n - 1))*Ei(z)+(exp(- z))/(factorial(n - 1))*sum(factorial(n - k - 2)*(- z)^(k), k = 0..n - 2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n, z] == Divide[(- z)^(n - 1),(n - 1)!]*ExpIntegralE[1, z]+Divide[Exp[- z],(n - 1)!]*Sum[(n - k - 2)!*(- z)^(k), {k, 0, n - 2}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.393548628-1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4577249979+1.994294304*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .4577249979+1.994294304*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 21]
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E9 8.19.E9] || [[Item:Q2695|<math>\genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}</syntaxhighlight> || <math>\realpart@@{(n-k)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(n, z) = ((- 1)^(n)* (z)^(n - 1))/(factorial(n - 1))*ln(z)+(exp(- z))/(factorial(n - 1))*sum((- z)^(k - 1)* GAMMA(n - k), k = 1..n - 1)+(exp(- z)*(- z)^(n - 1))/(factorial(n - 1))*sum(((z)^(k))/(factorial(k))*Psi(k + 1), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n, z] == Divide[(- 1)^(n)* (z)^(n - 1),(n - 1)!]*Log[z]+Divide[Exp[- z],(n - 1)!]*Sum[(- z)^(k - 1)* Gamma[n - k], {k, 1, n - 1}, GenerateConditions->None]+Divide[Exp[- z]*(- z)^(n - 1),(n - 1)!]*Sum[Divide[(z)^(k),(k)!]*PolyGamma[k + 1], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.3691288000469654, -0.2016559825387078], Times[Complex[0.2188469268397846, -0.35920360372711485], Plus[-1.0, DifferenceRoot[Function[{, }
| [https://dlmf.nist.gov/8.19.E9 8.19.E9] || <math qid="Q2695">\genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}</syntaxhighlight> || <math>\realpart@@{(n-k)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(n, z) = ((- 1)^(n)* (z)^(n - 1))/(factorial(n - 1))*ln(z)+(exp(- z))/(factorial(n - 1))*sum((- z)^(k - 1)* GAMMA(n - k), k = 1..n - 1)+(exp(- z)*(- z)^(n - 1))/(factorial(n - 1))*sum(((z)^(k))/(factorial(k))*Psi(k + 1), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n, z] == Divide[(- 1)^(n)* (z)^(n - 1),(n - 1)!]*Log[z]+Divide[Exp[- z],(n - 1)!]*Sum[(- z)^(k - 1)* Gamma[n - k], {k, 1, n - 1}, GenerateConditions->None]+Divide[Exp[- z]*(- z)^(n - 1),(n - 1)!]*Sum[Divide[(z)^(k),(k)!]*PolyGamma[k + 1], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.3691288000469654, -0.2016559825387078], Times[Complex[0.2188469268397846, -0.35920360372711485], Plus[-1.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[1, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-1, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 1]}]][2.0]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0256870546657635, -0.10579058942927923], Times[Complex[0.1094234634198923, -0.17960180186355743], Plus[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[1, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-1, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 1]}]][2.0]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.0256870546657635, -0.10579058942927923], Times[Complex[0.1094234634198923, -0.17960180186355743], Plus[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[2, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-2, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 2]}]][3.0]]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[2, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-2, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 2]}]][3.0]]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/8.19.E10 8.19.E10] || [[Item:Q2696|<math>\genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}</syntaxhighlight> || <math>\realpart@@{(1-p)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p)- sum(((- z)^(k))/(factorial(k)*(1 - p + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p]- Sum[Divide[(- z)^(k),(k)!*(1 - p + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
| [https://dlmf.nist.gov/8.19.E10 8.19.E10] || <math qid="Q2696">\genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}</syntaxhighlight> || <math>\realpart@@{(1-p)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p)- sum(((- z)^(k))/(factorial(k)*(1 - p + k)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p]- Sum[Divide[(- z)^(k),(k)!*(1 - p + k)], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E11 8.19.E11] || [[Item:Q2697|<math>\genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)</syntaxhighlight> || <math>\realpart@@{(1-p)} > 0, \realpart@@{(2-p+k)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = GAMMA(1 - p)*((z)^(p - 1)- exp(- z)*sum(((z)^(k))/(GAMMA(2 - p + k)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Gamma[1 - p]*((z)^(p - 1)- Exp[- z]*Sum[Divide[(z)^(k),Gamma[2 - p + k]], {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
| [https://dlmf.nist.gov/8.19.E11 8.19.E11] || <math qid="Q2697">\genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)</syntaxhighlight> || <math>\realpart@@{(1-p)} > 0, \realpart@@{(2-p+k)} > 0</math> || <syntaxhighlight lang=mathematica>Ei(p, z) = GAMMA(1 - p)*((z)^(p - 1)- exp(- z)*sum(((z)^(k))/(GAMMA(2 - p + k)), k = 0..infinity))</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == Gamma[1 - p]*((z)^(p - 1)- Exp[- z]*Sum[Divide[(z)^(k),Gamma[2 - p + k]], {k, 0, Infinity}, GenerateConditions->None])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E12 8.19.E12] || [[Item:Q2698|<math>p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>p*Ei(p + 1, z)+ z*Ei(p, z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>p*ExpIntegralE[p + 1, z]+ z*ExpIntegralE[p, z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E12 8.19.E12] || <math qid="Q2698">p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>p*Ei(p + 1, z)+ z*Ei(p, z) = exp(- z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>p*ExpIntegralE[p + 1, z]+ z*ExpIntegralE[p, z] == Exp[- z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E13 8.19.E13] || [[Item:Q2699|<math>\deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(Ei(p, z), z) = - Ei(p - 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ExpIntegralE[p, z], z] == - ExpIntegralE[p - 1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E13 8.19.E13] || <math qid="Q2699">\deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(Ei(p, z), z) = - Ei(p - 1, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ExpIntegralE[p, z], z] == - ExpIntegralE[p - 1, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E14 8.19.E14] || [[Item:Q2700|<math>\deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z)*Ei(p, z), z) = exp(z)*Ei(p, z)*(1 +(p - 1)/(z))-(1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z]*ExpIntegralE[p, z], z] == Exp[z]*ExpIntegralE[p, z]*(1 +Divide[p - 1,z])-Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E14 8.19.E14] || <math qid="Q2700">\deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(exp(z)*Ei(p, z), z) = exp(z)*Ei(p, z)*(1 +(p - 1)/(z))-(1)/(z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Exp[z]*ExpIntegralE[p, z], z] == Exp[z]*ExpIntegralE[p, z]*(1 +Divide[p - 1,z])-Divide[1,z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E15 8.19.E15] || [[Item:Q2701|<math>\pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>diff(Ei(p, z), [p$(j)]) = (- 1)^(j)* int((ln(t))^(j)* (t)^(- p)* exp(- z*t), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ExpIntegralE[p, z], {p, j}] == (- 1)^(j)* Integrate[(Log[t])^(j)* (t)^(- p)* Exp[- z*t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/8.19.E15 8.19.E15] || <math qid="Q2701">\pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>diff(Ei(p, z), [p$(j)]) = (- 1)^(j)* int((ln(t))^(j)* (t)^(- p)* exp(- z*t), t = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[ExpIntegralE[p, z], {p, j}] == (- 1)^(j)* Integrate[(Log[t])^(j)* (t)^(- p)* Exp[- z*t], {t, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/8.19.E16 8.19.E16] || [[Item:Q2702|<math>\genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* exp(- z)*KummerU(p, p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Exp[- z]*HypergeometricU[p, p, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E16 8.19.E16] || <math qid="Q2702">\genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(p, z) = (z)^(p - 1)* exp(- z)*KummerU(p, p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[p, z] == (z)^(p - 1)* Exp[- z]*HypergeometricU[p, p, z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E19 8.19.E19] || [[Item:Q2705|<math>\frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(n - 1)/(n)*Ei(n, x) < Ei(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[n - 1,n]*ExpIntegralE[n, x] < ExpIntegralE[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E19 8.19.E19] || <math qid="Q2705">\frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(n - 1)/(n)*Ei(n, x) < Ei(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[n - 1,n]*ExpIntegralE[n, x] < ExpIntegralE[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E19 8.19.E19] || [[Item:Q2705|<math>\genexpintE{n+1}@{x} < \genexpintE{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n+1}@{x} < \genexpintE{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(n + 1, x) < Ei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n + 1, x] < ExpIntegralE[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E19 8.19.E19] || <math qid="Q2705">\genexpintE{n+1}@{x} < \genexpintE{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genexpintE{n+1}@{x} < \genexpintE{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Ei(n + 1, x) < Ei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>ExpIntegralE[n + 1, x] < ExpIntegralE[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E20 8.19.E20] || [[Item:Q2706|<math>\left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(Ei(n, x))^(2) < Ei(n - 1, x)*Ei(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(ExpIntegralE[n, x])^(2) < ExpIntegralE[n - 1, x]*ExpIntegralE[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E20 8.19.E20] || <math qid="Q2706">\left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(Ei(n, x))^(2) < Ei(n - 1, x)*Ei(n + 1, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(ExpIntegralE[n, x])^(2) < ExpIntegralE[n - 1, x]*ExpIntegralE[n + 1, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E21 8.19.E21] || [[Item:Q2707|<math>\frac{1}{x+n} < e^{x}\genexpintE{n}@{x}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{x+n} < e^{x}\genexpintE{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(x + n) < exp(x)*Ei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,x + n] < Exp[x]*ExpIntegralE[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E21 8.19.E21] || <math qid="Q2707">\frac{1}{x+n} < e^{x}\genexpintE{n}@{x}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{x+n} < e^{x}\genexpintE{n}@{x}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(x + n) < exp(x)*Ei(n, x)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,x + n] < Exp[x]*ExpIntegralE[n, x]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E21 8.19.E21] || [[Item:Q2707|<math>e^{x}\genexpintE{n}@{x} \leq \frac{1}{x+n-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x}\genexpintE{n}@{x} \leq \frac{1}{x+n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x)*Ei(n, x) <= (1)/(x + n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x]*ExpIntegralE[n, x] <= Divide[1,x + n - 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E21 8.19.E21] || <math qid="Q2707">e^{x}\genexpintE{n}@{x} \leq \frac{1}{x+n-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{x}\genexpintE{n}@{x} \leq \frac{1}{x+n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(x)*Ei(n, x) <= (1)/(x + n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[x]*ExpIntegralE[n, x] <= Divide[1,x + n - 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E22 8.19.E22] || [[Item:Q2708|<math>\deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((Ei(n, x))/(Ei(n - 1, x)), x) > 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Divide[ExpIntegralE[n, x],ExpIntegralE[n - 1, x]], x] > 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
| [https://dlmf.nist.gov/8.19.E22 8.19.E22] || <math qid="Q2708">\deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff((Ei(n, x))/(Ei(n - 1, x)), x) > 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[Divide[ExpIntegralE[n, x],ExpIntegralE[n - 1, x]], x] > 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 9] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E23 8.19.E23] || [[Item:Q2709|<math>\int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}</syntaxhighlight> || <math>|\phase@@{z}| < \pi</math> || <syntaxhighlight lang=mathematica>int(Ei(p - 1, t), t = z..infinity) = Ei(p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ExpIntegralE[p - 1, t], {t, z, Infinity}, GenerateConditions->None] == ExpIntegralE[p, z]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
| [https://dlmf.nist.gov/8.19.E23 8.19.E23] || <math qid="Q2709">\int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}</syntaxhighlight> || <math>|\phase@@{z}| < \pi</math> || <syntaxhighlight lang=mathematica>int(Ei(p - 1, t), t = z..infinity) = Ei(p, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ExpIntegralE[p - 1, t], {t, z, Infinity}, GenerateConditions->None] == ExpIntegralE[p, z]</syntaxhighlight> || Failure || Successful || Skipped - Because timed out || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E24 8.19.E24] || [[Item:Q2710|<math>\int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)</syntaxhighlight> || <math>\realpart@@{a} > -1</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*Ei(n, t), t = 0..infinity) = ((- 1)^(n - 1))/((a)^(n))*(ln(1 + a)+ sum(((- 1)^(k)* (a)^(k))/(k), k = 1..n - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*ExpIntegralE[n, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(- 1)^(n - 1),(a)^(n)]*(Log[1 + a]+ Sum[Divide[(- 1)^(k)* (a)^(k),k], {k, 1, n - 1}, GenerateConditions->None])</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
| [https://dlmf.nist.gov/8.19.E24 8.19.E24] || <math qid="Q2710">\int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)</syntaxhighlight> || <math>\realpart@@{a} > -1</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*Ei(n, t), t = 0..infinity) = ((- 1)^(n - 1))/((a)^(n))*(ln(1 + a)+ sum(((- 1)^(k)* (a)^(k))/(k), k = 1..n - 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*ExpIntegralE[n, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(- 1)^(n - 1),(a)^(n)]*(Log[1 + a]+ Sum[Divide[(- 1)^(k)* (a)^(k),k], {k, 1, n - 1}, GenerateConditions->None])</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 18]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E25 8.19.E25] || [[Item:Q2711|<math>\int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}</syntaxhighlight> || <math>\realpart@@{a} > -1, \realpart@{p+b} > 1, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*(t)^(b - 1)* Ei(p, t), t = 0..infinity) = (GAMMA(b)*(1 + a)^(- b))/(p + b - 1)* hypergeom([1, b], [p + b], a/(1 + a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*(t)^(b - 1)* ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[b]*(1 + a)^(- b),p + b - 1]* Hypergeometric2F1[1, b, p + b, a/(1 + a)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 64]
| [https://dlmf.nist.gov/8.19.E25 8.19.E25] || <math qid="Q2711">\int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}</syntaxhighlight> || <math>\realpart@@{a} > -1, \realpart@{p+b} > 1, \realpart@@{b} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*(t)^(b - 1)* Ei(p, t), t = 0..infinity) = (GAMMA(b)*(1 + a)^(- b))/(p + b - 1)* hypergeom([1, b], [p + b], a/(1 + a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*(t)^(b - 1)* ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[b]*(1 + a)^(- b),p + b - 1]* Hypergeometric2F1[1, b, p + b, a/(1 + a)]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Successful [Tested: 64]
|-  
|-  
| [https://dlmf.nist.gov/8.19.E26 8.19.E26] || [[Item:Q2712|<math>\int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}</syntaxhighlight> || <math>p > 0, q > 0, p+q > 1</math> || <syntaxhighlight lang=mathematica>int(Ei(p, t)*Ei(q, t), t = 0..infinity) = (L(p)+ L(q))/(p + q - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ExpIntegralE[p, t]*ExpIntegralE[q, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[L[p]+ L[q],p + q - 1]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [80 / 80]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8698344324715543, -0.7499999999999999]
| [https://dlmf.nist.gov/8.19.E26 8.19.E26] || <math qid="Q2712">\int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}</syntaxhighlight> || <math>p > 0, q > 0, p+q > 1</math> || <syntaxhighlight lang=mathematica>int(Ei(p, t)*Ei(q, t), t = 0..infinity) = (L(p)+ L(q))/(p + q - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[ExpIntegralE[p, t]*ExpIntegralE[q, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[L[p]+ L[q],p + q - 1]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [80 / 80]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8698344324715543, -0.7499999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26794919243112303, -0.9999999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.26794919243112303, -0.9999999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/8.19.E27 8.19.E27] || [[Item:Q2713|<math>L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}</syntaxhighlight> || <math>p > 0</math> || <syntaxhighlight lang=mathematica>L(p) = int(exp(- t)*Ei(p, t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>L[p] == Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8698344324715546, 0.7499999999999999]
| [https://dlmf.nist.gov/8.19.E27 8.19.E27] || <math qid="Q2713">L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}</syntaxhighlight> || <math>p > 0</math> || <syntaxhighlight lang=mathematica>L(p) = int(exp(- t)*Ei(p, t), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>L[p] == Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [30 / 30]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8698344324715546, 0.7499999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.1377836249026771, 0.24999999999999997]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.1377836249026771, 0.24999999999999997]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/8.19.E27 8.19.E27] || [[Item:Q2713|<math>\int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}</syntaxhighlight> || <math>p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*Ei(p, t), t = 0..infinity) = (1)/(2*p)*hypergeom([1, 1], [1 + p], (1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*p]*Hypergeometric2F1[1, 1, 1 + p, Divide[1,2]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/8.19.E27 8.19.E27] || <math qid="Q2713">\int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}</syntaxhighlight> || <math>p > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- t)*Ei(p, t), t = 0..infinity) = (1)/(2*p)*hypergeom([1, 1], [1 + p], (1)/(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*p]*Hypergeometric2F1[1, 1, 1 + p, Divide[1,2]]</syntaxhighlight> || Failure || Successful || Successful [Tested: 3] || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 11:19, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.19.E1 E p ( z ) = z p - 1 Γ ( 1 - p , z ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 incomplete-Gamma 1 𝑝 𝑧 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\Gamma\left(1-p,z% \right)}}
\genexpintE{p}@{z} = z^{p-1}\incGamma@{1-p}{z}

Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p, z)
ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p, z]
Successful Successful - Successful [Tested: 70]
8.19.E2 E p ( z ) = z p - 1 z e - t t p d t exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript subscript 𝑧 superscript 𝑒 𝑡 superscript 𝑡 𝑝 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\int_{z}^{\infty}\frac% {e^{-t}}{t^{p}}\mathrm{d}t}}
\genexpintE{p}@{z} = z^{p-1}\int_{z}^{\infty}\frac{e^{-t}}{t^{p}}\diff{t}

Ei(p, z) = (z)^(p - 1)* int((exp(- t))/((t)^(p)), t = z..infinity)
ExpIntegralE[p, z] == (z)^(p - 1)* Integrate[Divide[Exp[- t],(t)^(p)], {t, z, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 70]
8.19.E3 E p ( z ) = 1 e - z t t p d t exponential-integral-En 𝑝 𝑧 superscript subscript 1 superscript 𝑒 𝑧 𝑡 superscript 𝑡 𝑝 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=\int_{1}^{\infty}\frac{e^{-zt% }}{t^{p}}\mathrm{d}t}}
\genexpintE{p}@{z} = \int_{1}^{\infty}\frac{e^{-zt}}{t^{p}}\diff{t}
| ph z | < 1 2 π phase 𝑧 1 2 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi}}
Ei(p, z) = int((exp(- z*t))/((t)^(p)), t = 1..infinity)
ExpIntegralE[p, z] == Integrate[Divide[Exp[- z*t],(t)^(p)], {t, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 50]
8.19.E4 E p ( z ) = z p - 1 e - z Γ ( p ) 0 t p - 1 e - z t 1 + t d t exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 Euler-Gamma 𝑝 superscript subscript 0 superscript 𝑡 𝑝 1 superscript 𝑒 𝑧 𝑡 1 𝑡 𝑡 {\displaystyle{\displaystyle E_{p}\left(z\right)=\frac{z^{p-1}e^{-z}}{\Gamma% \left(p\right)}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\mathrm{d}t}}
\genexpintE{p}@{z} = \frac{z^{p-1}e^{-z}}{\EulerGamma@{p}}\int_{0}^{\infty}\frac{t^{p-1}e^{-zt}}{1+t}\diff{t}
| ph z | < 1 2 π , p > 0 formulae-sequence phase 𝑧 1 2 𝜋 𝑝 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\tfrac{1}{2}\pi,\Re p>0}}
Ei(p, z) = ((z)^(p - 1)* exp(- z))/(GAMMA(p))*int(((t)^(p - 1)* exp(- z*t))/(1 + t), t = 0..infinity)
ExpIntegralE[p, z] == Divide[(z)^(p - 1)* Exp[- z],Gamma[p]]*Integrate[Divide[(t)^(p - 1)* Exp[- z*t],1 + t], {t, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 25]
8.19.E5 E 0 ( z ) = z - 1 e - z exponential-integral-En 0 𝑧 superscript 𝑧 1 superscript 𝑒 𝑧 {\displaystyle{\displaystyle E_{0}\left(z\right)=z^{-1}e^{-z}}}
\genexpintE{0}@{z} = z^{-1}e^{-z}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
Ei(0, z) = (z)^(- 1)* exp(- z)
ExpIntegralE[0, z] == (z)^(- 1)* Exp[- z]
Successful Successful - Successful [Tested: 7]
8.19.E6 E p ( 0 ) = 1 p - 1 exponential-integral-En 𝑝 0 1 𝑝 1 {\displaystyle{\displaystyle E_{p}\left(0\right)=\frac{1}{p-1}}}
\genexpintE{p}@{0} = \frac{1}{p-1}
p > 1 𝑝 1 {\displaystyle{\displaystyle\Re p>1}}
Ei(p, 0) = (1)/(p - 1)
ExpIntegralE[p, 0] == Divide[1,p - 1]
Successful Successful - Successful [Tested: 2]
8.19.E7 E n ( z ) = ( - z ) n - 1 ( n - 1 ) ! E 1 ( z ) + e - z ( n - 1 ) ! k = 0 n - 2 ( n - k - 2 ) ! ( - z ) k exponential-integral-En 𝑛 𝑧 superscript 𝑧 𝑛 1 𝑛 1 exponential-integral 𝑧 superscript 𝑒 𝑧 𝑛 1 superscript subscript 𝑘 0 𝑛 2 𝑛 𝑘 2 superscript 𝑧 𝑘 {\displaystyle{\displaystyle E_{n}\left(z\right)=\frac{(-z)^{n-1}}{(n-1)!}E_{1% }\left(z\right)+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}}}
\genexpintE{n}@{z} = \frac{(-z)^{n-1}}{(n-1)!}\expintE@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}

Ei(n, z) = ((- z)^(n - 1))/(factorial(n - 1))*Ei(z)+(exp(- z))/(factorial(n - 1))*sum(factorial(n - k - 2)*(- z)^(k), k = 0..n - 2)
ExpIntegralE[n, z] == Divide[(- z)^(n - 1),(n - 1)!]*ExpIntegralE[1, z]+Divide[Exp[- z],(n - 1)!]*Sum[(n - k - 2)!*(- z)^(k), {k, 0, n - 2}, GenerateConditions->None]
Failure Failure
Failed [21 / 21]
Result: -1.393548628-1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1, n = 2}

Result: .4577249979+1.994294304*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2, n = 2}

... skip entries to safe data
Successful [Tested: 21]
8.19.E9 E n ( z ) = ( - 1 ) n z n - 1 ( n - 1 ) ! ln z + e - z ( n - 1 ) ! k = 1 n - 1 ( - z ) k - 1 Γ ( n - k ) + e - z ( - z ) n - 1 ( n - 1 ) ! k = 0 z k k ! ψ ( k + 1 ) exponential-integral-En 𝑛 𝑧 superscript 1 𝑛 superscript 𝑧 𝑛 1 𝑛 1 𝑧 superscript 𝑒 𝑧 𝑛 1 superscript subscript 𝑘 1 𝑛 1 superscript 𝑧 𝑘 1 Euler-Gamma 𝑛 𝑘 superscript 𝑒 𝑧 superscript 𝑧 𝑛 1 𝑛 1 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 digamma 𝑘 1 {\displaystyle{\displaystyle E_{n}\left(z\right)=\frac{(-1)^{n}z^{n-1}}{(n-1)!% }\ln z+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\Gamma\left(n-k\right)+% \frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\psi\left(k+% 1\right)}}
\genexpintE{n}@{z} = \frac{(-1)^{n}z^{n-1}}{(n-1)!}\ln@@{z}+\frac{e^{-z}}{(n-1)!}\sum_{k=1}^{n-1}(-z)^{k-1}\EulerGamma@{n-k}+\frac{e^{-z}(-z)^{n-1}}{(n-1)!}\sum_{k=0}^{\infty}\frac{z^{k}}{k!}\digamma@{k+1}
( n - k ) > 0 𝑛 𝑘 0 {\displaystyle{\displaystyle\Re(n-k)>0}}
Ei(n, z) = ((- 1)^(n)* (z)^(n - 1))/(factorial(n - 1))*ln(z)+(exp(- z))/(factorial(n - 1))*sum((- z)^(k - 1)* GAMMA(n - k), k = 1..n - 1)+(exp(- z)*(- z)^(n - 1))/(factorial(n - 1))*sum(((z)^(k))/(factorial(k))*Psi(k + 1), k = 0..infinity)
ExpIntegralE[n, z] == Divide[(- 1)^(n)* (z)^(n - 1),(n - 1)!]*Log[z]+Divide[Exp[- z],(n - 1)!]*Sum[(- z)^(k - 1)* Gamma[n - k], {k, 1, n - 1}, GenerateConditions->None]+Divide[Exp[- z]*(- z)^(n - 1),(n - 1)!]*Sum[Divide[(z)^(k),(k)!]*PolyGamma[k + 1], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 21]
Failed [16 / 21]
Result: Plus[Complex[0.3691288000469654, -0.2016559825387078], Times[Complex[0.2188469268397846, -0.35920360372711485], Plus[-1.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[1, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-1, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 1]}]][2.0]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.0256870546657635, -0.10579058942927923], Times[Complex[0.1094234634198923, -0.17960180186355743], Plus[-2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Power[-1, Rational[1, 6]], []], Times[Plus[2, Times[-1, Power[-1, Rational[1, 6]]], Times[-1, ]], [Plus[1, ]]], Times[Plus[-2, ], [Plus[2, ]]]], 0], Equal[[0], 0], Equal[[1], 2]}]][3.0]]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
8.19.E10 E p ( z ) = z p - 1 Γ ( 1 - p ) - k = 0 ( - z ) k k ! ( 1 - p + k ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 Euler-Gamma 1 𝑝 superscript subscript 𝑘 0 superscript 𝑧 𝑘 𝑘 1 𝑝 𝑘 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}\Gamma\left(1-p\right)% -\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}}}
\genexpintE{p}@{z} = z^{p-1}\EulerGamma@{1-p}-\sum_{k=0}^{\infty}\frac{(-z)^{k}}{k!(1-p+k)}
( 1 - p ) > 0 1 𝑝 0 {\displaystyle{\displaystyle\Re(1-p)>0}}
Ei(p, z) = (z)^(p - 1)* GAMMA(1 - p)- sum(((- z)^(k))/(factorial(k)*(1 - p + k)), k = 0..infinity)
ExpIntegralE[p, z] == (z)^(p - 1)* Gamma[1 - p]- Sum[Divide[(- z)^(k),(k)!*(1 - p + k)], {k, 0, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 56]
8.19.E11 E p ( z ) = Γ ( 1 - p ) ( z p - 1 - e - z k = 0 z k Γ ( 2 - p + k ) ) exponential-integral-En 𝑝 𝑧 Euler-Gamma 1 𝑝 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 superscript subscript 𝑘 0 superscript 𝑧 𝑘 Euler-Gamma 2 𝑝 𝑘 {\displaystyle{\displaystyle E_{p}\left(z\right)=\Gamma\left(1-p\right)\left(z% ^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\Gamma\left(2-p+k\right)}\right)}}
\genexpintE{p}@{z} = \EulerGamma@{1-p}\left(z^{p-1}-e^{-z}\sum_{k=0}^{\infty}\frac{z^{k}}{\EulerGamma@{2-p+k}}\right)
( 1 - p ) > 0 , ( 2 - p + k ) > 0 formulae-sequence 1 𝑝 0 2 𝑝 𝑘 0 {\displaystyle{\displaystyle\Re(1-p)>0,\Re(2-p+k)>0}}
Ei(p, z) = GAMMA(1 - p)*((z)^(p - 1)- exp(- z)*sum(((z)^(k))/(GAMMA(2 - p + k)), k = 0..infinity))
ExpIntegralE[p, z] == Gamma[1 - p]*((z)^(p - 1)- Exp[- z]*Sum[Divide[(z)^(k),Gamma[2 - p + k]], {k, 0, Infinity}, GenerateConditions->None])
Successful Successful - Successful [Tested: 56]
8.19.E12 p E p + 1 ( z ) + z E p ( z ) = e - z 𝑝 exponential-integral-En 𝑝 1 𝑧 𝑧 exponential-integral-En 𝑝 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle pE_{p+1}\left(z\right)+zE_{p}\left(z\right)=e^{-z% }}}
p\genexpintE{p+1}@{z}+z\genexpintE{p}@{z} = e^{-z}

p*Ei(p + 1, z)+ z*Ei(p, z) = exp(- z)
p*ExpIntegralE[p + 1, z]+ z*ExpIntegralE[p, z] == Exp[- z]
Successful Successful - Successful [Tested: 70]
8.19.E13 d d z E p ( z ) = - E p - 1 ( z ) derivative 𝑧 exponential-integral-En 𝑝 𝑧 exponential-integral-En 𝑝 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}E_{p}\left(z\right)=% -E_{p-1}\left(z\right)}}
\deriv{}{z}\genexpintE{p}@{z} = -\genexpintE{p-1}@{z}

diff(Ei(p, z), z) = - Ei(p - 1, z)
D[ExpIntegralE[p, z], z] == - ExpIntegralE[p - 1, z]
Successful Successful - Successful [Tested: 70]
8.19.E14 d d z ( e z E p ( z ) ) = e z E p ( z ) ( 1 + p - 1 z ) - 1 z derivative 𝑧 superscript 𝑒 𝑧 exponential-integral-En 𝑝 𝑧 superscript 𝑒 𝑧 exponential-integral-En 𝑝 𝑧 1 𝑝 1 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}(e^{z}E_{p}\left(z% \right))=e^{z}E_{p}\left(z\right)\left(1+\frac{p-1}{z}\right)-\frac{1}{z}}}
\deriv{}{z}(e^{z}\genexpintE{p}@{z}) = e^{z}\genexpintE{p}@{z}\left(1+\frac{p-1}{z}\right)-\frac{1}{z}

diff(exp(z)*Ei(p, z), z) = exp(z)*Ei(p, z)*(1 +(p - 1)/(z))-(1)/(z)
D[Exp[z]*ExpIntegralE[p, z], z] == Exp[z]*ExpIntegralE[p, z]*(1 +Divide[p - 1,z])-Divide[1,z]
Successful Successful - Successful [Tested: 70]
8.19.E15 j E p ( z ) p j = ( - 1 ) j 1 ( ln t ) j t - p e - z t d t partial-derivative exponential-integral-En 𝑝 𝑧 𝑝 𝑗 superscript 1 𝑗 superscript subscript 1 superscript 𝑡 𝑗 superscript 𝑡 𝑝 superscript 𝑒 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\frac{{\partial}^{j}E_{p}\left(z\right)}{{\partial p% }^{j}}=(-1)^{j}\int_{1}^{\infty}(\ln t)^{j}t^{-p}e^{-zt}\mathrm{d}t}}
\pderiv[j]{\genexpintE{p}@{z}}{p} = (-1)^{j}\int_{1}^{\infty}(\ln@@{t})^{j}t^{-p}e^{-zt}\diff{t}
z > 0 𝑧 0 {\displaystyle{\displaystyle\Re z>0}}
diff(Ei(p, z), [p$(j)]) = (- 1)^(j)* int((ln(t))^(j)* (t)^(- p)* exp(- z*t), t = 1..infinity)
D[ExpIntegralE[p, z], {p, j}] == (- 1)^(j)* Integrate[(Log[t])^(j)* (t)^(- p)* Exp[- z*t], {t, 1, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
8.19.E16 E p ( z ) = z p - 1 e - z U ( p , p , z ) exponential-integral-En 𝑝 𝑧 superscript 𝑧 𝑝 1 superscript 𝑒 𝑧 Kummer-confluent-hypergeometric-U 𝑝 𝑝 𝑧 {\displaystyle{\displaystyle E_{p}\left(z\right)=z^{p-1}e^{-z}U\left(p,p,z% \right)}}
\genexpintE{p}@{z} = z^{p-1}e^{-z}\KummerconfhyperU@{p}{p}{z}

Ei(p, z) = (z)^(p - 1)* exp(- z)*KummerU(p, p, z)
ExpIntegralE[p, z] == (z)^(p - 1)* Exp[- z]*HypergeometricU[p, p, z]
Successful Successful - Successful [Tested: 70]
8.19.E19 n - 1 n E n ( x ) < E n + 1 ( x ) 𝑛 1 𝑛 exponential-integral-En 𝑛 𝑥 exponential-integral-En 𝑛 1 𝑥 {\displaystyle{\displaystyle\frac{n-1}{n}E_{n}\left(x\right)<E_{n+1}\left(x% \right)}}
\frac{n-1}{n}\genexpintE{n}@{x} < \genexpintE{n+1}@{x}

(n - 1)/(n)*Ei(n, x) < Ei(n + 1, x)
Divide[n - 1,n]*ExpIntegralE[n, x] < ExpIntegralE[n + 1, x]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E19 E n + 1 ( x ) < E n ( x ) exponential-integral-En 𝑛 1 𝑥 exponential-integral-En 𝑛 𝑥 {\displaystyle{\displaystyle E_{n+1}\left(x\right)<E_{n}\left(x\right)}}
\genexpintE{n+1}@{x} < \genexpintE{n}@{x}

Ei(n + 1, x) < Ei(n, x)
ExpIntegralE[n + 1, x] < ExpIntegralE[n, x]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E20 ( E n ( x ) ) 2 < E n - 1 ( x ) E n + 1 ( x ) superscript exponential-integral-En 𝑛 𝑥 2 exponential-integral-En 𝑛 1 𝑥 exponential-integral-En 𝑛 1 𝑥 {\displaystyle{\displaystyle\left(E_{n}\left(x\right)\right)^{2}<E_{n-1}\left(% x\right)E_{n+1}\left(x\right)}}
\left(\genexpintE{n}@{x}\right)^{2} < \genexpintE{n-1}@{x}\genexpintE{n+1}@{x}

(Ei(n, x))^(2) < Ei(n - 1, x)*Ei(n + 1, x)
(ExpIntegralE[n, x])^(2) < ExpIntegralE[n - 1, x]*ExpIntegralE[n + 1, x]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E21 1 x + n < e x E n ( x ) 1 𝑥 𝑛 superscript 𝑒 𝑥 exponential-integral-En 𝑛 𝑥 {\displaystyle{\displaystyle\frac{1}{x+n}<e^{x}E_{n}\left(x\right)}}
\frac{1}{x+n} < e^{x}\genexpintE{n}@{x}

(1)/(x + n) < exp(x)*Ei(n, x)
Divide[1,x + n] < Exp[x]*ExpIntegralE[n, x]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E21 e x E n ( x ) 1 x + n - 1 superscript 𝑒 𝑥 exponential-integral-En 𝑛 𝑥 1 𝑥 𝑛 1 {\displaystyle{\displaystyle e^{x}E_{n}\left(x\right)\leq\frac{1}{x+n-1}}}
e^{x}\genexpintE{n}@{x} \leq \frac{1}{x+n-1}

exp(x)*Ei(n, x) <= (1)/(x + n - 1)
Exp[x]*ExpIntegralE[n, x] <= Divide[1,x + n - 1]
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E22 d d x E n ( x ) E n - 1 ( x ) > 0 derivative 𝑥 exponential-integral-En 𝑛 𝑥 exponential-integral-En 𝑛 1 𝑥 0 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}x}\frac{E_{n}\left(x% \right)}{E_{n-1}\left(x\right)}>0}}
\deriv{}{x}\frac{\genexpintE{n}@{x}}{\genexpintE{n-1}@{x}} > 0

diff((Ei(n, x))/(Ei(n - 1, x)), x) > 0
D[Divide[ExpIntegralE[n, x],ExpIntegralE[n - 1, x]], x] > 0
Failure Failure Successful [Tested: 9] Successful [Tested: 9]
8.19.E23 z E p - 1 ( t ) d t = E p ( z ) superscript subscript 𝑧 exponential-integral-En 𝑝 1 𝑡 𝑡 exponential-integral-En 𝑝 𝑧 {\displaystyle{\displaystyle\int_{z}^{\infty}E_{p-1}\left(t\right)\mathrm{d}t=% E_{p}\left(z\right)}}
\int_{z}^{\infty}\genexpintE{p-1}@{t}\diff{t} = \genexpintE{p}@{z}
| ph z | < π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi}}
int(Ei(p - 1, t), t = z..infinity) = Ei(p, z)
Integrate[ExpIntegralE[p - 1, t], {t, z, Infinity}, GenerateConditions->None] == ExpIntegralE[p, z]
Failure Successful Skipped - Because timed out Successful [Tested: 70]
8.19.E24 0 e - a t E n ( t ) d t = ( - 1 ) n - 1 a n ( ln ( 1 + a ) + k = 1 n - 1 ( - 1 ) k a k k ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 exponential-integral-En 𝑛 𝑡 𝑡 superscript 1 𝑛 1 superscript 𝑎 𝑛 1 𝑎 superscript subscript 𝑘 1 𝑛 1 superscript 1 𝑘 superscript 𝑎 𝑘 𝑘 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}E_{n}\left(t\right)\mathrm% {d}t=\frac{(-1)^{n-1}}{a^{n}}\left(\ln\left(1+a\right)+\sum_{k=1}^{n-1}\frac{(% -1)^{k}a^{k}}{k}\right)}}
\int_{0}^{\infty}e^{-at}\genexpintE{n}@{t}\diff{t} = \frac{(-1)^{n-1}}{a^{n}}\left(\ln@{1+a}+\sum_{k=1}^{n-1}\frac{(-1)^{k}a^{k}}{k}\right)
a > - 1 𝑎 1 {\displaystyle{\displaystyle\Re a>-1}}
int(exp(- a*t)*Ei(n, t), t = 0..infinity) = ((- 1)^(n - 1))/((a)^(n))*(ln(1 + a)+ sum(((- 1)^(k)* (a)^(k))/(k), k = 1..n - 1))
Integrate[Exp[- a*t]*ExpIntegralE[n, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[(- 1)^(n - 1),(a)^(n)]*(Log[1 + a]+ Sum[Divide[(- 1)^(k)* (a)^(k),k], {k, 1, n - 1}, GenerateConditions->None])
Successful Failure - Successful [Tested: 18]
8.19.E25 0 e - a t t b - 1 E p ( t ) d t = Γ ( b ) ( 1 + a ) - b p + b - 1 F ( 1 , b ; p + b ; a / ( 1 + a ) ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 superscript 𝑡 𝑏 1 exponential-integral-En 𝑝 𝑡 𝑡 Euler-Gamma 𝑏 superscript 1 𝑎 𝑏 𝑝 𝑏 1 Gauss-hypergeometric-F 1 𝑏 𝑝 𝑏 𝑎 1 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}t^{b-1}E_{p}\left(t\right)% \mathrm{d}t=\frac{\Gamma\left(b\right)(1+a)^{-b}}{p+b-1}\*F\left(1,b;p+b;a/(1+% a)\right)}}
\int_{0}^{\infty}e^{-at}t^{b-1}\genexpintE{p}@{t}\diff{t} = \frac{\EulerGamma@{b}(1+a)^{-b}}{p+b-1}\*\hyperF@{1}{b}{p+b}{a/(1+a)}
a > - 1 , ( p + b ) > 1 , b > 0 formulae-sequence 𝑎 1 formulae-sequence 𝑝 𝑏 1 𝑏 0 {\displaystyle{\displaystyle\Re a>-1,\Re\left(p+b\right)>1,\Re b>0}}
int(exp(- a*t)*(t)^(b - 1)* Ei(p, t), t = 0..infinity) = (GAMMA(b)*(1 + a)^(- b))/(p + b - 1)* hypergeom([1, b], [p + b], a/(1 + a))
Integrate[Exp[- a*t]*(t)^(b - 1)* ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[b]*(1 + a)^(- b),p + b - 1]* Hypergeometric2F1[1, b, p + b, a/(1 + a)]
Failure Aborted Skipped - Because timed out Successful [Tested: 64]
8.19.E26 0 E p ( t ) E q ( t ) d t = L ( p ) + L ( q ) p + q - 1 superscript subscript 0 exponential-integral-En 𝑝 𝑡 exponential-integral-En 𝑞 𝑡 𝑡 𝐿 𝑝 𝐿 𝑞 𝑝 𝑞 1 {\displaystyle{\displaystyle\int_{0}^{\infty}E_{p}\left(t\right)E_{q}\left(t% \right)\mathrm{d}t=\frac{L(p)+L(q)}{p+q-1}}}
\int_{0}^{\infty}\genexpintE{p}@{t}\genexpintE{q}@{t}\diff{t} = \frac{L(p)+L(q)}{p+q-1}
p > 0 , q > 0 , p + q > 1 formulae-sequence 𝑝 0 formulae-sequence 𝑞 0 𝑝 𝑞 1 {\displaystyle{\displaystyle p>0,q>0,p+q>1}}
int(Ei(p, t)*Ei(q, t), t = 0..infinity) = (L(p)+ L(q))/(p + q - 1)
Integrate[ExpIntegralE[p, t]*ExpIntegralE[q, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[L[p]+ L[q],p + q - 1]
Failure Failure Skipped - Because timed out
Failed [80 / 80]
Result: Complex[-0.8698344324715543, -0.7499999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 1.5]}

Result: Complex[0.26794919243112303, -0.9999999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5], Rule[q, 0.5]}

... skip entries to safe data
8.19.E27 L ( p ) = 0 e - t E p ( t ) d t 𝐿 𝑝 superscript subscript 0 superscript 𝑒 𝑡 exponential-integral-En 𝑝 𝑡 𝑡 {\displaystyle{\displaystyle L(p)=\int_{0}^{\infty}e^{-t}E_{p}\left(t\right)% \mathrm{d}t}}
L(p) = \int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t}
p > 0 𝑝 0 {\displaystyle{\displaystyle p>0}}
L(p) = int(exp(- t)*Ei(p, t), t = 0..infinity)
L[p] == Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [30 / 30]
Result: Complex[0.8698344324715546, 0.7499999999999999]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 1.5]}

Result: Complex[-1.1377836249026771, 0.24999999999999997]
Test Values: {Rule[L, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[p, 0.5]}

... skip entries to safe data
8.19.E27 0 e - t E p ( t ) d t = 1 2 p F ( 1 , 1 ; 1 + p ; 1 2 ) superscript subscript 0 superscript 𝑒 𝑡 exponential-integral-En 𝑝 𝑡 𝑡 1 2 𝑝 Gauss-hypergeometric-F 1 1 1 𝑝 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}E_{p}\left(t\right)\mathrm{% d}t=\frac{1}{2p}F\left(1,1;1+p;\tfrac{1}{2}\right)}}
\int_{0}^{\infty}e^{-t}\genexpintE{p}@{t}\diff{t} = \frac{1}{2p}\hyperF@{1}{1}{1+p}{\tfrac{1}{2}}
p > 0 𝑝 0 {\displaystyle{\displaystyle p>0}}
int(exp(- t)*Ei(p, t), t = 0..infinity) = (1)/(2*p)*hypergeom([1, 1], [1 + p], (1)/(2))
Integrate[Exp[- t]*ExpIntegralE[p, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2*p]*Hypergeometric2F1[1, 1, 1 + p, Divide[1,2]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]