10.4: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex1 10.4#Ex1] || [[Item:Q3011|<math>\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.4#Ex1 10.4#Ex1] || <math qid="Q3011">\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex2 10.4#Ex2] || [[Item:Q3012|<math>\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((-(-n))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.4#Ex2 10.4#Ex2] || <math qid="Q3012">\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((-(-n))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex3 10.4#Ex3] || [[Item:Q3013|<math>\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.4#Ex3 10.4#Ex3] || <math qid="Q3013">\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex4 10.4#Ex4] || [[Item:Q3014|<math>\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
| [https://dlmf.nist.gov/10.4#Ex4 10.4#Ex4] || <math qid="Q3014">\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex5 10.4#Ex5] || [[Item:Q3015|<math>\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex5 10.4#Ex5] || <math qid="Q3015">\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex6 10.4#Ex6] || [[Item:Q3016|<math>\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex6 10.4#Ex6] || <math qid="Q3016">\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex7 10.4#Ex7] || [[Item:Q3017|<math>\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex7 10.4#Ex7] || <math qid="Q3017">\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex8 10.4#Ex8] || [[Item:Q3018|<math>\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex8 10.4#Ex8] || <math qid="Q3018">\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4.E5 10.4.E5] || [[Item:Q3019|<math>\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.4.E5 10.4.E5] || <math qid="Q3019">\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex9 10.4#Ex9] || [[Item:Q3020|<math>\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex9 10.4#Ex9] || <math qid="Q3020">\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4#Ex10 10.4#Ex10] || [[Item:Q3021|<math>\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/10.4#Ex10 10.4#Ex10] || <math qid="Q3021">\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] || [[Item:Q3022|<math>\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] || <math qid="Q3022">\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] || [[Item:Q3022|<math>i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] || <math qid="Q3022">i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] || [[Item:Q3023|<math>\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] || <math qid="Q3023">\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] || [[Item:Q3023|<math>i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] || <math qid="Q3023">i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:22, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.4#Ex1 J - n ( z ) = ( - 1 ) n J n ( z ) Bessel-J 𝑛 𝑧 superscript 1 𝑛 Bessel-J 𝑛 𝑧 {\displaystyle{\displaystyle J_{-n}\left(z\right)=(-1)^{n}J_{n}\left(z\right)}}
\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0}}
BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)
BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex2 Y - n ( z ) = ( - 1 ) n Y n ( z ) Bessel-Y-Weber 𝑛 𝑧 superscript 1 𝑛 Bessel-Y-Weber 𝑛 𝑧 {\displaystyle{\displaystyle Y_{-n}\left(z\right)=(-1)^{n}Y_{n}\left(z\right)}}
\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}
( ( - n ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 , ( ( - ( - n ) ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑛 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0,\Re((-(-n))+k+1)>0}}
BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)
BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex3 H - n ( 1 ) ( z ) = ( - 1 ) n H n ( 1 ) ( z ) Hankel-H-1-Bessel-third-kind 𝑛 𝑧 superscript 1 𝑛 Hankel-H-1-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{-n}}\left(z\right)=(-1)^{n}{H^{(1)}_{n}}% \left(z\right)}}
\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}

HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)
HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex4 H - n ( 2 ) ( z ) = ( - 1 ) n H n ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 𝑛 𝑧 superscript 1 𝑛 Hankel-H-2-Bessel-third-kind 𝑛 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{-n}}\left(z\right)=(-1)^{n}{H^{(2)}_{n}}% \left(z\right)}}
\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}

HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)
HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.4#Ex5 H ν ( 1 ) ( z ) = J ν ( z ) + i Y ν ( z ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )+iY_{\nu}\left(z\right)}}
\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)
HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.4#Ex6 H ν ( 2 ) ( z ) = J ν ( z ) - i Y ν ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=J_{\nu}\left(z\right% )-iY_{\nu}\left(z\right)}}
\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)
HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.4#Ex7 J ν ( z ) = 1 2 ( H ν ( 1 ) ( z ) + H ν ( 2 ) ( z ) ) Bessel-J 𝜈 𝑧 1 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\frac{1}{2}\left({H^{(1)}_{% \nu}}\left(z\right)+{H^{(2)}_{\nu}}\left(z\right)\right)}}
\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)
( ν + k + 1 ) > 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0}}
BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))
BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])
Successful Successful - Successful [Tested: 70]
10.4#Ex8 Y ν ( z ) = 1 2 i ( H ν ( 1 ) ( z ) - H ν ( 2 ) ( z ) ) Bessel-Y-Weber 𝜈 𝑧 1 2 𝑖 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=\frac{1}{2i}\left({H^{(1)}_% {\nu}}\left(z\right)-{H^{(2)}_{\nu}}\left(z\right)\right)}}
\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))
BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])
Successful Successful - Successful [Tested: 70]
10.4.E5 J ν ( z ) = csc ( ν π ) ( Y - ν ( z ) - Y ν ( z ) cos ( ν π ) ) Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 Bessel-Y-Weber 𝜈 𝑧 𝜈 𝜋 {\displaystyle{\displaystyle J_{\nu}\left(z\right)=\csc\left(\nu\pi\right)% \left(Y_{-\nu}\left(z\right)-Y_{\nu}\left(z\right)\cos\left(\nu\pi\right)% \right)}}
\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))
BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4#Ex9 H - ν ( 1 ) ( z ) = e ν π i H ν ( 1 ) ( z ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{-\nu}}\left(z\right)=e^{\nu\pi i}{H^{(1)% }_{\nu}}\left(z\right)}}
\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}

HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)
HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]
Successful Failure - Successful [Tested: 70]
10.4#Ex10 H - ν ( 2 ) ( z ) = e - ν π i H ν ( 2 ) ( z ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{-\nu}}\left(z\right)=e^{-\nu\pi i}{H^{(2% )}_{\nu}}\left(z\right)}}
\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}

HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)
HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]
Successful Failure - Successful [Tested: 70]
10.4.E7 H ν ( 1 ) ( z ) = i csc ( ν π ) ( e - ν π i J ν ( z ) - J - ν ( z ) ) Hankel-H-1-Bessel-third-kind 𝜈 𝑧 𝑖 𝜈 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(1)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(e^{-\nu\pi i}J_{\nu}\left(z\right)-J_{-\nu}\left(z\right)\right)}}
\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))
HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E7 i csc ( ν π ) ( e - ν π i J ν ( z ) - J - ν ( z ) ) = csc ( ν π ) ( Y - ν ( z ) - e - ν π i Y ν ( z ) ) 𝑖 𝜈 𝜋 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(e^{-\nu\pi i}J_{\nu% }\left(z\right)-J_{-\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(Y_{% -\nu}\left(z\right)-e^{-\nu\pi i}Y_{\nu}\left(z\right)\right)}}
i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)
( ν + k + 1 ) > 0 , ( ( - ν ) + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))
I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E8 H ν ( 2 ) ( z ) = i csc ( ν π ) ( J - ν ( z ) - e ν π i J ν ( z ) ) Hankel-H-2-Bessel-third-kind 𝜈 𝑧 𝑖 𝜈 𝜋 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle{H^{(2)}_{\nu}}\left(z\right)=i\csc\left(\nu\pi% \right)\left(J_{-\nu}\left(z\right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)}}
\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))
HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.4.E8 i csc ( ν π ) ( J - ν ( z ) - e ν π i J ν ( z ) ) = csc ( ν π ) ( Y - ν ( z ) - e ν π i Y ν ( z ) ) 𝑖 𝜈 𝜋 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-J 𝜈 𝑧 𝜈 𝜋 Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 𝜋 𝑖 Bessel-Y-Weber 𝜈 𝑧 {\displaystyle{\displaystyle i\csc\left(\nu\pi\right)\left(J_{-\nu}\left(z% \right)-e^{\nu\pi i}J_{\nu}\left(z\right)\right)=\csc\left(\nu\pi\right)\left(% Y_{-\nu}\left(z\right)-e^{\nu\pi i}Y_{\nu}\left(z\right)\right)}}
i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)
( ( - ν ) + k + 1 ) > 0 , ( ν + k + 1 ) > 0 , ( ( - ( - ν ) ) + k + 1 ) > 0 formulae-sequence 𝜈 𝑘 1 0 formulae-sequence 𝜈 𝑘 1 0 𝜈 𝑘 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0,\Re((-(-\nu))+k+1% )>0}}
I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))
I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data