10.4: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex1 10.4#Ex1] | | | [https://dlmf.nist.gov/10.4#Ex1 10.4#Ex1] || <math qid="Q3011">\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex2 10.4#Ex2] | | | [https://dlmf.nist.gov/10.4#Ex2 10.4#Ex2] || <math qid="Q3012">\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z}</syntaxhighlight> || <math>\realpart@@{((-n)+k+1)} > 0, \realpart@@{(n+k+1)} > 0, \realpart@@{((-(-n))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex3 10.4#Ex3] | | | [https://dlmf.nist.gov/10.4#Ex3 10.4#Ex3] || <math qid="Q3013">\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex4 10.4#Ex4] | | | [https://dlmf.nist.gov/10.4#Ex4 10.4#Ex4] || <math qid="Q3014">\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]</syntaxhighlight> || Failure || Failure || Successful [Tested: 21] || Successful [Tested: 21] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex5 10.4#Ex5] | | | [https://dlmf.nist.gov/10.4#Ex5 10.4#Ex5] || <math qid="Q3015">\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex6 10.4#Ex6] | | | [https://dlmf.nist.gov/10.4#Ex6 10.4#Ex6] || <math qid="Q3016">\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex7 10.4#Ex7] | | | [https://dlmf.nist.gov/10.4#Ex7 10.4#Ex7] || <math qid="Q3017">\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex8 10.4#Ex8] | | | [https://dlmf.nist.gov/10.4#Ex8 10.4#Ex8] || <math qid="Q3018">\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4.E5 10.4.E5] | | | [https://dlmf.nist.gov/10.4.E5 10.4.E5] || <math qid="Q3019">\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex9 10.4#Ex9] | | | [https://dlmf.nist.gov/10.4#Ex9 10.4#Ex9] || <math qid="Q3020">\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4#Ex10 10.4#Ex10] | | | [https://dlmf.nist.gov/10.4#Ex10 10.4#Ex10] || <math qid="Q3021">\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]</syntaxhighlight> || Successful || Failure || - || Successful [Tested: 70] | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] | | | [https://dlmf.nist.gov/10.4.E7 10.4.E7] || <math qid="Q3022">\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4.E7 10.4.E7] | | | [https://dlmf.nist.gov/10.4.E7 10.4.E7] || <math qid="Q3022">i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] | | | [https://dlmf.nist.gov/10.4.E8 10.4.E8] || <math qid="Q3023">\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.4.E8 10.4.E8] | | | [https://dlmf.nist.gov/10.4.E8 10.4.E8] || <math qid="Q3023">i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right)</syntaxhighlight> || <math>\realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-(-\nu))+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])</syntaxhighlight> || Successful || Successful || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [14 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:22, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.4#Ex1 | \BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z} |
BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)
|
BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
10.4#Ex2 | \BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z} |
BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)
|
BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
10.4#Ex3 | \HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z} |
|
HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)
|
HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
10.4#Ex4 | \HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z} |
|
HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)
|
HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] |
10.4#Ex5 | \HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z} |
HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)
|
HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]
|
Successful | Successful | - | Successful [Tested: 70] | |
10.4#Ex6 | \HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z} |
HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)
|
HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]
|
Successful | Successful | - | Successful [Tested: 70] | |
10.4#Ex7 | \BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right) |
BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))
|
BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])
|
Successful | Successful | - | Successful [Tested: 70] | |
10.4#Ex8 | \BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right) |
BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))
|
BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])
|
Successful | Successful | - | Successful [Tested: 70] | |
10.4.E5 | \BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right) |
BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))
|
BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])
|
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data | |
10.4#Ex9 | \HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z} |
|
HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)
|
HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]
|
Successful | Failure | - | Successful [Tested: 70] |
10.4#Ex10 | \HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z} |
|
HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)
|
HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]
|
Successful | Failure | - | Successful [Tested: 70] |
10.4.E7 | \HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) |
HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))
|
HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])
|
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data | |
10.4.E7 | i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right) |
I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))
|
I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])
|
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data | |
10.4.E8 | \HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) |
HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))
|
HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])
|
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data | |
10.4.E8 | i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right) |
I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))
|
I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])
|
Successful | Successful | - | Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data |