10.23: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/10.23.E3 10.23.E3] || [[Item:Q3455|<math>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.23.E3 10.23.E3] || <math qid="Q3455">\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{(k+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/10.23.E4 10.23.E4] || [[Item:Q3456|<math>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</syntaxhighlight> || <math>n \geq 1, \realpart@@{(k+k+1)} > 0, \realpart@@{((2n-k)+k+1)} > 0, \realpart@@{((2n+k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
| [https://dlmf.nist.gov/10.23.E4 10.23.E4] || <math qid="Q3456">\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0</syntaxhighlight> || <math>n \geq 1, \realpart@@{(k+k+1)} > 0, \realpart@@{((2n-k)+k+1)} > 0, \realpart@@{((2n+k)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0</syntaxhighlight> || Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.23.E5 10.23.E5] || [[Item:Q3457|<math>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</syntaxhighlight> || <math>\realpart@@{(k+k+1)} > 0, \realpart@@{((n-k)+k+1)} > 0, \realpart@@{((n+k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
| [https://dlmf.nist.gov/10.23.E5 10.23.E5] || <math qid="Q3457">\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}</syntaxhighlight> || <math>\realpart@@{(k+k+1)} > 0, \realpart@@{((n-k)+k+1)} > 0, \realpart@@{((n+k)+k+1)} > 0, \realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || <div class="toccolours mw-collapsible mw-collapsed">Failed [21 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.23#Ex1 10.23#Ex1] || [[Item:Q3458|<math>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3146075610-.1816387601*I
| [https://dlmf.nist.gov/10.23#Ex1 10.23#Ex1] || <math qid="Q3458">w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))</syntaxhighlight> || <syntaxhighlight lang=mathematica>w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3146075609842255, -0.18163876002333418]
Line 30: Line 30:
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.23#Ex2 10.23#Ex2] || [[Item:Q3459|<math>u-v\cos@@{\alpha} = w\cos@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u-v\cos@@{\alpha} = w\cos@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u - v*cos(alpha) = w*cos(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263783978e-1+.4431282844*I
| [https://dlmf.nist.gov/10.23#Ex2 10.23#Ex2] || <math qid="Q3459">u-v\cos@@{\alpha} = w\cos@@{\chi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u-v\cos@@{\alpha} = w\cos@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u - v*cos(alpha) = w*cos(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.026378398027867456, 0.44312828415668515]
Line 36: Line 36:
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.23#Ex3 10.23#Ex3] || [[Item:Q3460|<math>v\sin@@{\alpha} = w\sin@@{\chi}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>v\sin@@{\alpha} = w\sin@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>v*sin(alpha) = w*sin(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>v*Sin[\[Alpha]] == w*Sin[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2887554391-.2231097873*I
| [https://dlmf.nist.gov/10.23#Ex3 10.23#Ex3] || <math qid="Q3460">v\sin@@{\alpha} = w\sin@@{\chi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>v\sin@@{\alpha} = w\sin@@{\chi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>v*sin(alpha) = w*sin(chi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>v*Sin[\[Alpha]] == w*Sin[\[Chi]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [294 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [294 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.2887554393029954, -0.22310978722682606]
Line 42: Line 42:
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/10.23.E9 10.23.E9] || [[Item:Q3463|<math>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu)} > 0</math> || <syntaxhighlight lang=mathematica>exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/10.23.E9 10.23.E9] || <math qid="Q3463">e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}</syntaxhighlight> || <math>\realpart@@{((\nu+k)+k+1)} > 0, \realpart@@{(\nu)} > 0</math> || <syntaxhighlight lang=mathematica>exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/10.23.E15 10.23.E15] || [[Item:Q3469|<math>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</syntaxhighlight> || <math>\realpart@@{((\nu+2k)+k+1)} > 0, \realpart@@{(\nu+k)} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.23.E15 10.23.E15] || <math qid="Q3469">(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}</syntaxhighlight> || <math>\realpart@@{((\nu+2k)+k+1)} > 0, \realpart@@{(\nu+k)} > 0</math> || <syntaxhighlight lang=mathematica>((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Skipped - Because timed out || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/10.23.E16 10.23.E16] || [[Item:Q3470|<math>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
| [https://dlmf.nist.gov/10.23.E16 10.23.E16] || <math qid="Q3470">\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}</syntaxhighlight> || <math>\realpart@@{(0+k+1)} > 0, \realpart@@{((2k)+k+1)} > 0, \realpart@@{((-0)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Successful || Successful [Tested: 7] || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/10.23.E17 10.23.E17] || [[Item:Q3471|<math>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
| [https://dlmf.nist.gov/10.23.E17 10.23.E17] || <math qid="Q3471">\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0, \realpart@@{(k+k+1)} > 0, \realpart@@{((n+2k)+k+1)} > 0, \realpart@@{((-n)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Aborted || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [16 / 21]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 11:24, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.23.E3 J 0 2 ( z ) + 2 k = 1 J k 2 ( z ) = 1 Bessel-J 0 2 𝑧 2 superscript subscript 𝑘 1 Bessel-J 𝑘 2 𝑧 1 {\displaystyle{\displaystyle{J_{0}^{2}}\left(z\right)+2\sum_{k=1}^{\infty}{J_{% k}^{2}}\left(z\right)=1}}
\BesselJ{0}^{2}@{z}+2\sum_{k=1}^{\infty}\BesselJ{k}^{2}@{z} = 1
( 0 + k + 1 ) > 0 , ( k + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 𝑘 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re(k+k+1)>0}}
(BesselJ(0, z))^(2)+ 2*sum((BesselJ(k, z))^(2), k = 1..infinity) = 1
(BesselJ[0, z])^(2)+ 2*Sum[(BesselJ[k, z])^(2), {k, 1, Infinity}, GenerateConditions->None] == 1
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E4 k = 0 2 n ( - 1 ) k J k ( z ) J 2 n - k ( z ) + 2 k = 1 J k ( z ) J 2 n + k ( z ) = 0 superscript subscript 𝑘 0 2 𝑛 superscript 1 𝑘 Bessel-J 𝑘 𝑧 Bessel-J 2 𝑛 𝑘 𝑧 2 superscript subscript 𝑘 1 Bessel-J 𝑘 𝑧 Bessel-J 2 𝑛 𝑘 𝑧 0 {\displaystyle{\displaystyle\sum_{k=0}^{2n}(-1)^{k}J_{k}\left(z\right)J_{2n-k}% \left(z\right)\\ +2\sum_{k=1}^{\infty}J_{k}\left(z\right)J_{2n+k}\left(z\right)=0}}
\sum_{k=0}^{2n}(-1)^{k}\BesselJ{k}@{z}\BesselJ{2n-k}@{z}\\ +2\sum_{k=1}^{\infty}\BesselJ{k}@{z}\BesselJ{2n+k}@{z} = 0
n 1 , ( k + k + 1 ) > 0 , ( ( 2 n - k ) + k + 1 ) > 0 , ( ( 2 n + k ) + k + 1 ) > 0 formulae-sequence 𝑛 1 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 2 𝑛 𝑘 𝑘 1 0 2 𝑛 𝑘 𝑘 1 0 {\displaystyle{\displaystyle n\geq 1,\Re(k+k+1)>0,\Re((2n-k)+k+1)>0,\Re((2n+k)% +k+1)>0}}
sum((- 1)^(k)* BesselJ(k, z)*BesselJ(2*n - k, z)*; , k = 0..2*n)+ 2*sum(BesselJ(k, z)*BesselJ(2*n + k, z), k = 1..infinity) = 0
Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[2*n - k, z]*, {k, 0, 2*n}, GenerateConditions->None]+ 2*Sum[BesselJ[k, z]*BesselJ[2*n + k, z], {k, 1, Infinity}, GenerateConditions->None] == 0
Error Failure -
Failed [21 / 21]
Result: Plus[Complex[0.00727987412712798, -0.017853077134921347], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[2.4034761502300195*^-4, -3.087748713313073*^-5], Times[2.0, NSum[Times[BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[4, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23.E5 k = 0 n J k ( z ) J n - k ( z ) + 2 k = 1 ( - 1 ) k J k ( z ) J n + k ( z ) = J n ( 2 z ) superscript subscript 𝑘 0 𝑛 Bessel-J 𝑘 𝑧 Bessel-J 𝑛 𝑘 𝑧 2 superscript subscript 𝑘 1 superscript 1 𝑘 Bessel-J 𝑘 𝑧 Bessel-J 𝑛 𝑘 𝑧 Bessel-J 𝑛 2 𝑧 {\displaystyle{\displaystyle\sum_{k=0}^{n}J_{k}\left(z\right)J_{n-k}\left(z% \right)+2\sum_{k=1}^{\infty}(-1)^{k}J_{k}\left(z\right)J_{n+k}\left(z\right)=J% _{n}\left(2z\right)}}
\sum_{k=0}^{n}\BesselJ{k}@{z}\BesselJ{n-k}@{z}+2\sum_{k=1}^{\infty}(-1)^{k}\BesselJ{k}@{z}\BesselJ{n+k}@{z} = \BesselJ{n}@{2z}
( k + k + 1 ) > 0 , ( ( n - k ) + k + 1 ) > 0 , ( ( n + k ) + k + 1 ) > 0 , ( n + k + 1 ) > 0 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 𝑛 𝑘 𝑘 1 0 formulae-sequence 𝑛 𝑘 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(k+k+1)>0,\Re((n-k)+k+1)>0,\Re((n+k)+k+1)>0,\Re% (n+k+1)>0}}
sum(BesselJ(k, z)*BesselJ(n - k, z), k = 0..n)+ 2*sum((- 1)^(k)* BesselJ(k, z)*BesselJ(n + k, z), k = 1..infinity) = BesselJ(n, 2*z)
Sum[BesselJ[k, z]*BesselJ[n - k, z], {k, 0, n}, GenerateConditions->None]+ 2*Sum[(- 1)^(k)* BesselJ[k, z]*BesselJ[n + k, z], {k, 1, Infinity}, GenerateConditions->None] == BesselJ[n, 2*z]
Aborted Failure Skipped - Because timed out
Failed [21 / 21]
Result: Plus[Complex[0.024343533040476317, 0.10797471990649704], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[1, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[-0.006069425709337772, 0.017711723121060452], Times[2.0, NSum[Times[Power[-1, k], BesselJ[k, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], BesselJ[Plus[2, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]
Test Values: {k, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
10.23#Ex1 w = u 2 + v 2 - 2 u v cos α 𝑤 superscript 𝑢 2 superscript 𝑣 2 2 𝑢 𝑣 𝛼 {\displaystyle{\displaystyle w=\sqrt{u^{2}+v^{2}-2uv\cos\alpha}}}
w = \sqrt{u^{2}+v^{2}-2uv\cos@@{\alpha}}

w = sqrt((u)^(2)+ (v)^(2)- 2*u*v*cos(alpha))
w == Sqrt[(u)^(2)+ (v)^(2)- 2*u*v*Cos[\[Alpha]]]
Failure Failure
Failed [300 / 300]
Result: -.3146075610-.1816387601*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: -1.680632965+.1843866439*I
Test Values: {alpha = 3/2, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3146075609842255, -0.18163876002333418]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5]}

Result: Complex[0.4375091763619045, 0.252596040745477]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 0.5]}

... skip entries to safe data
10.23#Ex2 u - v cos α = w cos χ 𝑢 𝑣 𝛼 𝑤 𝜒 {\displaystyle{\displaystyle u-v\cos\alpha=w\cos\chi}}
u-v\cos@@{\alpha} = w\cos@@{\chi}

u - v*cos(alpha) = w*cos(chi)
u - v*Cos[\[Alpha]] == w*Cos[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: -.263783978e-1+.4431282844*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: .8262683052-.3665121890*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.026378398027867456, 0.44312828415668515]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.023973249213014358, -0.5554825514041751]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23#Ex3 v sin α = w sin χ 𝑣 𝛼 𝑤 𝜒 {\displaystyle{\displaystyle v\sin\alpha=w\sin\chi}}
v\sin@@{\alpha} = w\sin@@{\chi}

v*sin(alpha) = w*sin(chi)
v*Sin[\[Alpha]] == w*Sin[\[Chi]]
Failure Failure
Failed [300 / 300]
Result: .2887554391-.2231097873*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I}

Result: 1.585713279-.763530664e-1*I
Test Values: {alpha = 3/2, chi = 1/2*3^(1/2)+1/2*I, v = 1/2*3^(1/2)+1/2*I, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [294 / 300]
Result: Complex[0.2887554393029954, -0.22310978722682606]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.8740447527972026, 0.09051196331992012]
Test Values: {Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[χ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
10.23.E9 e i v cos α = Γ ( ν ) ( 1 2 v ) ν k = 0 ( ν + k ) i k J ν + k ( v ) C k ( ν ) ( cos α ) superscript 𝑒 𝑖 𝑣 𝛼 Euler-Gamma 𝜈 superscript 1 2 𝑣 𝜈 superscript subscript 𝑘 0 𝜈 𝑘 superscript 𝑖 𝑘 Bessel-J 𝜈 𝑘 𝑣 ultraspherical-Gegenbauer-polynomial 𝜈 𝑘 𝛼 {\displaystyle{\displaystyle e^{iv\cos\alpha}=\frac{\Gamma\left(\nu\right)}{(% \tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}J_{\nu+k}\left(v\right)C% ^{(\nu)}_{k}\left(\cos\alpha\right)}}
e^{iv\cos@@{\alpha}} = \frac{\EulerGamma@{\nu}}{(\tfrac{1}{2}v)^{\nu}}\*\sum_{k=0}^{\infty}(\nu+k)i^{k}\BesselJ{\nu+k}@{v}\ultrasphpoly{\nu}{k}@{\cos@@{\alpha}}
( ( ν + k ) + k + 1 ) > 0 , ( ν ) > 0 formulae-sequence 𝜈 𝑘 𝑘 1 0 𝜈 0 {\displaystyle{\displaystyle\Re((\nu+k)+k+1)>0,\Re(\nu)>0}}
exp(I*v*cos(alpha)) = (GAMMA(nu))/(((1)/(2)*v)^(nu))* sum((nu + k)*(I)^(k)* BesselJ(nu + k, v)*GegenbauerC(k, nu, cos(alpha)), k = 0..infinity)
Exp[I*v*Cos[\[Alpha]]] == Divide[Gamma[\[Nu]],(Divide[1,2]*v)^\[Nu]]* Sum[(\[Nu]+ k)*(I)^(k)* BesselJ[\[Nu]+ k, v]*GegenbauerC[k, \[Nu], Cos[\[Alpha]]], {k, 0, Infinity}, GenerateConditions->None]
Aborted Failure Skipped - Because timed out Skipped - Because timed out
10.23.E15 ( 1 2 z ) ν = k = 0 ( ν + 2 k ) Γ ( ν + k ) k ! J ν + 2 k ( z ) superscript 1 2 𝑧 𝜈 superscript subscript 𝑘 0 𝜈 2 𝑘 Euler-Gamma 𝜈 𝑘 𝑘 Bessel-J 𝜈 2 𝑘 𝑧 {\displaystyle{\displaystyle(\tfrac{1}{2}z)^{\nu}=\sum_{k=0}^{\infty}\frac{(% \nu+2k)\Gamma\left(\nu+k\right)}{k!}J_{\nu+2k}\left(z\right)}}
(\tfrac{1}{2}z)^{\nu} = \sum_{k=0}^{\infty}\frac{(\nu+2k)\EulerGamma@{\nu+k}}{k!}\BesselJ{\nu+2k}@{z}
( ( ν + 2 k ) + k + 1 ) > 0 , ( ν + k ) > 0 formulae-sequence 𝜈 2 𝑘 𝑘 1 0 𝜈 𝑘 0 {\displaystyle{\displaystyle\Re((\nu+2k)+k+1)>0,\Re(\nu+k)>0}}
((1)/(2)*z)^(nu) = sum(((nu + 2*k)*GAMMA(nu + k))/(factorial(k))*BesselJ(nu + 2*k, z), k = 0..infinity)
(Divide[1,2]*z)^\[Nu] == Sum[Divide[(\[Nu]+ 2*k)*Gamma[\[Nu]+ k],(k)!]*BesselJ[\[Nu]+ 2*k, z], {k, 0, Infinity}, GenerateConditions->None]
Aborted Successful Skipped - Because timed out Successful [Tested: 7]
10.23.E16 Y 0 ( z ) = 2 π ( ln ( 1 2 z ) + γ ) J 0 ( z ) - 4 π k = 1 ( - 1 ) k J 2 k ( z ) k Bessel-Y-Weber 0 𝑧 2 𝜋 1 2 𝑧 Bessel-J 0 𝑧 4 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 Bessel-J 2 𝑘 𝑧 𝑘 {\displaystyle{\displaystyle Y_{0}\left(z\right)=\frac{2}{\pi}\left(\ln\left(% \tfrac{1}{2}z\right)+\gamma\right)J_{0}\left(z\right)-\frac{4}{\pi}\sum_{k=1}^% {\infty}(-1)^{k}\frac{J_{2k}\left(z\right)}{k}}}
\BesselY{0}@{z} = \frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}+\EulerConstant\right)\BesselJ{0}@{z}-\frac{4}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{\BesselJ{2k}@{z}}{k}
( 0 + k + 1 ) > 0 , ( ( 2 k ) + k + 1 ) > 0 , ( ( - 0 ) + k + 1 ) > 0 formulae-sequence 0 𝑘 1 0 formulae-sequence 2 𝑘 𝑘 1 0 0 𝑘 1 0 {\displaystyle{\displaystyle\Re(0+k+1)>0,\Re((2k)+k+1)>0,\Re((-0)+k+1)>0}}
BesselY(0, z) = (2)/(Pi)*(ln((1)/(2)*z)+ gamma)*BesselJ(0, z)-(4)/(Pi)*sum((- 1)^(k)*(BesselJ(2*k, z))/(k), k = 1..infinity)
BesselY[0, z] == Divide[2,Pi]*(Log[Divide[1,2]*z]+ EulerGamma)*BesselJ[0, z]-Divide[4,Pi]*Sum[(- 1)^(k)*Divide[BesselJ[2*k, z],k], {k, 1, Infinity}, GenerateConditions->None]
Aborted Successful Successful [Tested: 7] Successful [Tested: 7]
10.23.E17 Y n ( z ) = - n ! ( 1 2 z ) - n π k = 0 n - 1 ( 1 2 z ) k J k ( z ) k ! ( n - k ) + 2 π ( ln ( 1 2 z ) - ψ ( n + 1 ) ) J n ( z ) - 2 π k = 1 ( - 1 ) k ( n + 2 k ) J n + 2 k ( z ) k ( n + k ) Bessel-Y-Weber 𝑛 𝑧 𝑛 superscript 1 2 𝑧 𝑛 𝜋 superscript subscript 𝑘 0 𝑛 1 superscript 1 2 𝑧 𝑘 Bessel-J 𝑘 𝑧 𝑘 𝑛 𝑘 2 𝜋 1 2 𝑧 digamma 𝑛 1 Bessel-J 𝑛 𝑧 2 𝜋 superscript subscript 𝑘 1 superscript 1 𝑘 𝑛 2 𝑘 Bessel-J 𝑛 2 𝑘 𝑧 𝑘 𝑛 𝑘 {\displaystyle{\displaystyle Y_{n}\left(z\right)=-\frac{n!(\tfrac{1}{2}z)^{-n}% }{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}J_{k}\left(z\right)}{k!(n-k)}+% \frac{2}{\pi}\left(\ln\left(\tfrac{1}{2}z\right)-\psi\left(n+1\right)\right)J_% {n}\left(z\right)-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)J_{n+2k}% \left(z\right)}{k(n+k)}}}
\BesselY{n}@{z} = -\frac{n!(\tfrac{1}{2}z)^{-n}}{\pi}\sum_{k=0}^{n-1}\frac{(\tfrac{1}{2}z)^{k}\BesselJ{k}@{z}}{k!(n-k)}+\frac{2}{\pi}\left(\ln@{\tfrac{1}{2}z}-\digamma@{n+1}\right)\BesselJ{n}@{z}-\frac{2}{\pi}\sum_{k=1}^{\infty}(-1)^{k}\frac{(n+2k)\BesselJ{n+2k}@{z}}{k(n+k)}
( n + k + 1 ) > 0 , ( k + k + 1 ) > 0 , ( ( n + 2 k ) + k + 1 ) > 0 , ( ( - n ) + k + 1 ) > 0 formulae-sequence 𝑛 𝑘 1 0 formulae-sequence 𝑘 𝑘 1 0 formulae-sequence 𝑛 2 𝑘 𝑘 1 0 𝑛 𝑘 1 0 {\displaystyle{\displaystyle\Re(n+k+1)>0,\Re(k+k+1)>0,\Re((n+2k)+k+1)>0,\Re((-% n)+k+1)>0}}
BesselY(n, z) = -(factorial(n)*((1)/(2)*z)^(- n))/(Pi)*sum((((1)/(2)*z)^(k)* BesselJ(k, z))/(factorial(k)*(n - k)), k = 0..n - 1)+(2)/(Pi)*(ln((1)/(2)*z)- Psi(n + 1))*BesselJ(n, z)-(2)/(Pi)*sum((- 1)^(k)*((n + 2*k)*BesselJ(n + 2*k, z))/(k*(n + k)), k = 1..infinity)
BesselY[n, z] == -Divide[(n)!*(Divide[1,2]*z)^(- n),Pi]*Sum[Divide[(Divide[1,2]*z)^(k)* BesselJ[k, z],(k)!*(n - k)], {k, 0, n - 1}, GenerateConditions->None]+Divide[2,Pi]*(Log[Divide[1,2]*z]- PolyGamma[n + 1])*BesselJ[n, z]-Divide[2,Pi]*Sum[(- 1)^(k)*Divide[(n + 2*k)*BesselJ[n + 2*k, z],k*(n + k)], {k, 1, Infinity}, GenerateConditions->None]
Aborted Failure Manual Skip!
Failed [16 / 21]
Result: Plus[Complex[-0.41373222494160333, 0.38808044477324316], Times[Complex[0.5513288954217921, -0.31830988618379064], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[Times[-1, ], 1], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2], []], Times[Plus[4, Times[12, ], Times[12, Power[, 2]], Times[4, Power[, 3]], Times[-4, 1], Times[-8, , 1], Times[-4, Power[, 2], 1], Times[, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]], Times[-1, 1, Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], [Plus[1, ]]], Times[4, Plus[1, ], Plus[-5, Times[-6, ], Times[-2, Power[, 2]], Times[3, 1], Times[2, , 1]], [Plus[2, ]]], Times[-4, Plus[1, ], Plus[2, ], Plus[-2, Times[-1, ], 1], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Power[1, -1], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]<syntaxhighlight lang=mathematica>Result: Plus[Complex[-0.6198631863998064, 5.383408526303685], Times[Complex[0.0, -15.278874536821952], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Power[-1, Rational[1, 3]], Plus[-3, ], []], Times[Plus[-8, Times[-3, Power[-1, Rational[1, 3]]], Times[-12, ], Times[Power[-1, Rational[1, 3]], ], Times[4, Power[, 3]]], [Plus[1, ]]], Times[-8, Plus[1, ], Plus[-2, Power[, 2]], [Plus[2, ]]], Times[4, Plus[-1, ], Plus[1, ], Plus[2, ], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[2], Plus[Times[Rational[1, 3], BesselJ[0, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], BesselJ[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data