10.41: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41.E8 10.41.E8] || [[Item:Q3600|<math>p = (1+z^{2})^{-\frac{1}{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p = (1+z^{2})^{-\frac{1}{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p = (1 + (z)^(2))^(-(1)/(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p == (1 + (z)^(2))^(-Divide[1,2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41.E8 10.41.E8] || <math qid="Q3600">p = (1+z^{2})^{-\frac{1}{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p = (1+z^{2})^{-\frac{1}{2}}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p = (1 + (z)^(2))^(-(1)/(2))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p == (1 + (z)^(2))^(-Divide[1,2])</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex3 10.41#Ex3] || [[Item:Q3603|<math>U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex3 10.41#Ex3] || <math qid="Q3603">U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex4 10.41#Ex4] || [[Item:Q3604|<math>U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex4 10.41#Ex4] || <math qid="Q3604">U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex5 10.41#Ex5] || [[Item:Q3605|<math>U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex5 10.41#Ex5] || <math qid="Q3605">U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex6 10.41#Ex6] || [[Item:Q3606|<math>V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex6 10.41#Ex6] || <math qid="Q3606">V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex7 10.41#Ex7] || [[Item:Q3607|<math>V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex7 10.41#Ex7] || <math qid="Q3607">V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/10.41#Ex8 10.41#Ex8] || [[Item:Q3608|<math>V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/10.41#Ex8 10.41#Ex8] || <math qid="Q3608">V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:26, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.41.E8 p = ( 1 + z 2 ) - 1 2 𝑝 superscript 1 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle p=(1+z^{2})^{-\frac{1}{2}}}}
p = (1+z^{2})^{-\frac{1}{2}}

p = (1 + (z)^(2))^(-(1)/(2))
p == (1 + (z)^(2))^(-Divide[1,2])
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex3 U 1 ( p ) = 1 24 ( 3 p - 5 p 3 ) subscript 𝑈 1 𝑝 1 24 3 𝑝 5 superscript 𝑝 3 {\displaystyle{\displaystyle U_{1}(p)=\tfrac{1}{24}(3p-5p^{3})}}
U_{1}(p) = \tfrac{1}{24}(3p-5p^{3})

U[1](p) = (1)/(24)*(3*p - 5*(p)^(3))
Subscript[U, 1][p] == Divide[1,24]*(3*p - 5*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex4 U 2 ( p ) = 1 1152 ( 81 p 2 - 462 p 4 + 385 p 6 ) subscript 𝑈 2 𝑝 1 1152 81 superscript 𝑝 2 462 superscript 𝑝 4 385 superscript 𝑝 6 {\displaystyle{\displaystyle U_{2}(p)=\tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6% })}}
U_{2}(p) = \tfrac{1}{1152}(81p^{2}-462p^{4}+385p^{6})

U[2](p) = (1)/(1152)*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Subscript[U, 2][p] == Divide[1,1152]*(81*(p)^(2)- 462*(p)^(4)+ 385*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex5 U 3 ( p ) = 1 4 14720 ( 30375 p 3 - 3 69603 p 5 + 7 65765 p 7 - 4 25425 p 9 ) subscript 𝑈 3 𝑝 1 4 14720 30375 superscript 𝑝 3 3 69603 superscript 𝑝 5 7 65765 superscript 𝑝 7 4 25425 superscript 𝑝 9 {\displaystyle{\displaystyle U_{3}(p)=\tfrac{1}{4\;14720}\*(30375p^{3}-3\;6960% 3p^{5}+7\;65765p^{7}-4\;25425p^{9})}}
U_{3}(p) = \tfrac{1}{4\;14720}\*(30375p^{3}-3\;69603p^{5}+7\;65765p^{7}-4\;25425p^{9})

U[3](p) = (1)/(414720)*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Subscript[U, 3][p] == Divide[1,414720]*(30375*(p)^(3)- 369603*(p)^(5)+ 765765*(p)^(7)- 425425*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex6 V 1 ( p ) = 1 24 ( - 9 p + 7 p 3 ) subscript 𝑉 1 𝑝 1 24 9 𝑝 7 superscript 𝑝 3 {\displaystyle{\displaystyle V_{1}(p)=\tfrac{1}{24}(-9p+7p^{3})}}
V_{1}(p) = \tfrac{1}{24}(-9p+7p^{3})

V[1](p) = (1)/(24)*(- 9*p + 7*(p)^(3))
Subscript[V, 1][p] == Divide[1,24]*(- 9*p + 7*(p)^(3))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex7 V 2 ( p ) = 1 1152 ( - 135 p 2 + 594 p 4 - 455 p 6 ) subscript 𝑉 2 𝑝 1 1152 135 superscript 𝑝 2 594 superscript 𝑝 4 455 superscript 𝑝 6 {\displaystyle{\displaystyle V_{2}(p)=\tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^% {6})}}
V_{2}(p) = \tfrac{1}{1152}(-135p^{2}+594p^{4}-455p^{6})

V[2](p) = (1)/(1152)*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Subscript[V, 2][p] == Divide[1,1152]*(- 135*(p)^(2)+ 594*(p)^(4)- 455*(p)^(6))
Skipped - no semantic math Skipped - no semantic math - -
10.41#Ex8 V 3 ( p ) = 1 4 14720 ( - 42525 p 3 + 4 51737 p 5 - 8 83575 p 7 + 4 75475 p 9 ) subscript 𝑉 3 𝑝 1 4 14720 42525 superscript 𝑝 3 4 51737 superscript 𝑝 5 8 83575 superscript 𝑝 7 4 75475 superscript 𝑝 9 {\displaystyle{\displaystyle V_{3}(p)=\tfrac{1}{4\;14720}\*(-42525p^{3}+4\;517% 37p^{5}-8\;83575p^{7}+4\;75475p^{9})}}
V_{3}(p) = \tfrac{1}{4\;14720}\*(-42525p^{3}+4\;51737p^{5}-8\;83575p^{7}+4\;75475p^{9})

V[3](p) = (1)/(414720)*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Subscript[V, 3][p] == Divide[1,414720]*(- 42525*(p)^(3)+ 451737*(p)^(5)- 883575*(p)^(7)+ 475475*(p)^(9))
Skipped - no semantic math Skipped - no semantic math - -