11.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/11.7.E1 11.7.E1] || [[Item:Q3990|<math>\int z^{\nu}\StruveH{\nu-1}@{z}\diff{z} = z^{\nu}\StruveH{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{\nu}\StruveH{\nu-1}@{z}\diff{z} = z^{\nu}\StruveH{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(n+(\nu-1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(nu)* StruveH(nu - 1, z), z) = (z)^(nu)* StruveH(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^\[Nu]* StruveH[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveH[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
| [https://dlmf.nist.gov/11.7.E1 11.7.E1] || <math qid="Q3990">\int z^{\nu}\StruveH{\nu-1}@{z}\diff{z} = z^{\nu}\StruveH{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{\nu}\StruveH{\nu-1}@{z}\diff{z} = z^{\nu}\StruveH{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(n+(\nu-1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(nu)* StruveH(nu - 1, z), z) = (z)^(nu)* StruveH(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^\[Nu]* StruveH[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveH[\[Nu], z]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E2 11.7.E2] || [[Item:Q3991|<math>\int z^{-\nu}\StruveH{\nu+1}@{z}\diff{z} = -z^{-\nu}\StruveH{\nu}@{z}+\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{-\nu}\StruveH{\nu+1}@{z}\diff{z} = -z^{-\nu}\StruveH{\nu}@{z}+\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+(\nu+1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(- nu)* StruveH(nu + 1, z), z) = - (z)^(- nu)* StruveH(nu, z)+((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(- \[Nu])* StruveH[\[Nu]+ 1, z], z, GenerateConditions->None] == - (z)^(- \[Nu])* StruveH[\[Nu], z]+Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
| [https://dlmf.nist.gov/11.7.E2 11.7.E2] || <math qid="Q3991">\int z^{-\nu}\StruveH{\nu+1}@{z}\diff{z} = -z^{-\nu}\StruveH{\nu}@{z}+\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{-\nu}\StruveH{\nu+1}@{z}\diff{z} = -z^{-\nu}\StruveH{\nu}@{z}+\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+(\nu+1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(- nu)* StruveH(nu + 1, z), z) = - (z)^(- nu)* StruveH(nu, z)+((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(- \[Nu])* StruveH[\[Nu]+ 1, z], z, GenerateConditions->None] == - (z)^(- \[Nu])* StruveH[\[Nu], z]+Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E3 11.7.E3] || [[Item:Q3992|<math>\int z^{\nu}\modStruveL{\nu-1}@{z}\diff{z} = z^{\nu}\modStruveL{\nu}@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{\nu}\modStruveL{\nu-1}@{z}\diff{z} = z^{\nu}\modStruveL{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(n+(\nu-1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(nu)* StruveL(nu - 1, z), z) = (z)^(nu)* StruveL(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^\[Nu]* StruveL[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveL[\[Nu], z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 15.74633170+6.711214442*I
| [https://dlmf.nist.gov/11.7.E3 11.7.E3] || <math qid="Q3992">\int z^{\nu}\modStruveL{\nu-1}@{z}\diff{z} = z^{\nu}\modStruveL{\nu}@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{\nu}\modStruveL{\nu-1}@{z}\diff{z} = z^{\nu}\modStruveL{\nu}@{z}</syntaxhighlight> || <math>\realpart@@{(n+(\nu-1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(nu)* StruveL(nu - 1, z), z) = (z)^(nu)* StruveL(nu, z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^\[Nu]* StruveL[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveL[\[Nu], z]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 70]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 15.74633170+6.711214442*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1573.901952-547.1907270*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1573.901952-547.1907270*I
Test Values: {nu = -1/2+1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 70]
Test Values: {nu = -1/2+1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 70]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E4 11.7.E4] || [[Item:Q3993|<math>\int z^{-\nu}\modStruveL{\nu+1}@{z}\diff{z} = z^{-\nu}\modStruveL{\nu}@{z}-\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{-\nu}\modStruveL{\nu+1}@{z}\diff{z} = z^{-\nu}\modStruveL{\nu}@{z}-\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+(\nu+1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(- nu)* StruveL(nu + 1, z), z) = (z)^(- nu)* StruveL(nu, z)-((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(- \[Nu])* StruveL[\[Nu]+ 1, z], z, GenerateConditions->None] == (z)^(- \[Nu])* StruveL[\[Nu], z]-Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
| [https://dlmf.nist.gov/11.7.E4 11.7.E4] || <math qid="Q3993">\int z^{-\nu}\modStruveL{\nu+1}@{z}\diff{z} = z^{-\nu}\modStruveL{\nu}@{z}-\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int z^{-\nu}\modStruveL{\nu+1}@{z}\diff{z} = z^{-\nu}\modStruveL{\nu}@{z}-\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+(\nu+1)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((z)^(- nu)* StruveL(nu + 1, z), z) = (z)^(- nu)* StruveL(nu, z)-((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(z)^(- \[Nu])* StruveL[\[Nu]+ 1, z], z, GenerateConditions->None] == (z)^(- \[Nu])* StruveL[\[Nu], z]-Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 56]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E5 11.7.E5] || [[Item:Q3994|<math>f_{\nu}(z) = \int_{0}^{z}t^{\nu}\StruveH{\nu}@{t}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{\nu}(z) = \int_{0}^{z}t^{\nu}\StruveH{\nu}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>f[nu](z) = int((t)^(nu)* StruveH(nu, t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, \[Nu]][z] == Integrate[(t)^\[Nu]* StruveH[\[Nu], t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4776177026+.8322237517*I
| [https://dlmf.nist.gov/11.7.E5 11.7.E5] || <math qid="Q3994">f_{\nu}(z) = \int_{0}^{z}t^{\nu}\StruveH{\nu}@{t}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{\nu}(z) = \int_{0}^{z}t^{\nu}\StruveH{\nu}@{t}\diff{t}</syntaxhighlight> || <math>\realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>f[nu](z) = int((t)^(nu)* StruveH(nu, t), t = 0..z)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, \[Nu]][z] == Integrate[(t)^\[Nu]* StruveH[\[Nu], t], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4776177026+.8322237517*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8884077018+.4661983481*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.8884077018+.4661983481*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4776177021895665, 0.8322237514648603]
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4776177021895665, 0.8322237514648603]
Line 30: Line 30:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.7.E6 11.7.E6] || [[Item:Q3995|<math>f_{\nu+1}(z) = (2\nu+1)f_{\nu}(z)-z^{\nu+1}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{\nu+1}(z) = (2\nu+1)f_{\nu}(z)-z^{\nu+1}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>f[nu + 1](z) = (2*nu + 1)*f[nu](z)- (z)^(nu + 1)* StruveH(nu, z)+(((1)/(2)*(z)^(2))^(nu + 1))/((nu + 1)*sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, \[Nu]+ 1][z] == (2*\[Nu]+ 1)*Subscript[f, \[Nu]][z]- (z)^(\[Nu]+ 1)* StruveH[\[Nu], z]+Divide[(Divide[1,2]*(z)^(2))^(\[Nu]+ 1),(\[Nu]+ 1)*Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2926898254e-1-1.890529289*I
| [https://dlmf.nist.gov/11.7.E6 11.7.E6] || <math qid="Q3995">f_{\nu+1}(z) = (2\nu+1)f_{\nu}(z)-z^{\nu+1}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>f_{\nu+1}(z) = (2\nu+1)f_{\nu}(z)-z^{\nu+1}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}</syntaxhighlight> || <math>\realpart@@{\nu} > -1, \realpart@@{(\nu+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>f[nu + 1](z) = (2*nu + 1)*f[nu](z)- (z)^(nu + 1)* StruveH(nu, z)+(((1)/(2)*(z)^(2))^(nu + 1))/((nu + 1)*sqrt(Pi)*GAMMA(nu +(3)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[f, \[Nu]+ 1][z] == (2*\[Nu]+ 1)*Subscript[f, \[Nu]][z]- (z)^(\[Nu]+ 1)* StruveH[\[Nu], z]+Divide[(Divide[1,2]*(z)^(2))^(\[Nu]+ 1),(\[Nu]+ 1)*Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .2926898254e-1-1.890529289*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.336756421-2.256554693*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.336756421-2.256554693*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.029268983232513014, -1.8905292888907776]
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.029268983232513014, -1.8905292888907776]
Line 36: Line 36:
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.7.E7 11.7.E7] || [[Item:Q3996|<math>\int_{0}^{\pi/2}\StruveH{\nu}@{z\sin@@{\theta}}\frac{(\sin@@{\theta})^{\nu+1}}{(\cos@@{\theta})^{2\nu}}\diff{\theta} = \frac{2^{-\nu}}{\sqrt{\pi}}\EulerGamma@{\tfrac{1}{2}-\nu}z^{\nu-1}(1-\cos@@{z})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}\StruveH{\nu}@{z\sin@@{\theta}}\frac{(\sin@@{\theta})^{\nu+1}}{(\cos@@{\theta})^{2\nu}}\diff{\theta} = \frac{2^{-\nu}}{\sqrt{\pi}}\EulerGamma@{\tfrac{1}{2}-\nu}z^{\nu-1}(1-\cos@@{z})</syntaxhighlight> || <math>-\tfrac{3}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{(\tfrac{1}{2}-\nu)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(nu, z*sin(theta))*((sin(theta))^(nu + 1))/((cos(theta))^(2*nu)), theta = 0..Pi/2) = ((2)^(- nu))/(sqrt(Pi))*GAMMA((1)/(2)- nu)*(z)^(nu - 1)*(1 - cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[\[Nu], z*Sin[\[Theta]]]*Divide[(Sin[\[Theta]])^(\[Nu]+ 1),(Cos[\[Theta]])^(2*\[Nu])], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[(2)^(- \[Nu]),Sqrt[Pi]]*Gamma[Divide[1,2]- \[Nu]]*(z)^(\[Nu]- 1)*(1 - Cos[z])</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 21]
| [https://dlmf.nist.gov/11.7.E7 11.7.E7] || <math qid="Q3996">\int_{0}^{\pi/2}\StruveH{\nu}@{z\sin@@{\theta}}\frac{(\sin@@{\theta})^{\nu+1}}{(\cos@@{\theta})^{2\nu}}\diff{\theta} = \frac{2^{-\nu}}{\sqrt{\pi}}\EulerGamma@{\tfrac{1}{2}-\nu}z^{\nu-1}(1-\cos@@{z})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\pi/2}\StruveH{\nu}@{z\sin@@{\theta}}\frac{(\sin@@{\theta})^{\nu+1}}{(\cos@@{\theta})^{2\nu}}\diff{\theta} = \frac{2^{-\nu}}{\sqrt{\pi}}\EulerGamma@{\tfrac{1}{2}-\nu}z^{\nu-1}(1-\cos@@{z})</syntaxhighlight> || <math>-\tfrac{3}{2} < \realpart@@{\nu}, \realpart@@{\nu} < \tfrac{1}{2}, \realpart@@{(\tfrac{1}{2}-\nu)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(nu, z*sin(theta))*((sin(theta))^(nu + 1))/((cos(theta))^(2*nu)), theta = 0..Pi/2) = ((2)^(- nu))/(sqrt(Pi))*GAMMA((1)/(2)- nu)*(z)^(nu - 1)*(1 - cos(z))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[\[Nu], z*Sin[\[Theta]]]*Divide[(Sin[\[Theta]])^(\[Nu]+ 1),(Cos[\[Theta]])^(2*\[Nu])], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[(2)^(- \[Nu]),Sqrt[Pi]]*Gamma[Divide[1,2]- \[Nu]]*(z)^(\[Nu]- 1)*(1 - Cos[z])</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 21]
|-  
|-  
| [https://dlmf.nist.gov/11.7#Ex1 11.7#Ex1] || [[Item:Q3997|<math>\int_{0}^{\infty}\StruveH{0}@{t}\,\frac{\diff{t}}{t} = \tfrac{1}{2}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{0}@{t}\,\frac{\diff{t}}{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(0, t)*(1)/(t), t = 0..infinity) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[0, t]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/11.7#Ex1 11.7#Ex1] || <math qid="Q3997">\int_{0}^{\infty}\StruveH{0}@{t}\,\frac{\diff{t}}{t} = \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{0}@{t}\,\frac{\diff{t}}{t} = \tfrac{1}{2}\pi</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(0, t)*(1)/(t), t = 0..infinity) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[0, t]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/11.7#Ex2 11.7#Ex2] || [[Item:Q3998|<math>\int_{0}^{\infty}\StruveH{1}@{t}\,\frac{\diff{t}}{t^{2}} = \tfrac{1}{4}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{1}@{t}\,\frac{\diff{t}}{t^{2}} = \tfrac{1}{4}\pi</syntaxhighlight> || <math>\realpart@@{(n+1+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(1, t)*(1)/((t)^(2)), t = 0..infinity) = (1)/(4)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[1, t]*Divide[1,(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/11.7#Ex2 11.7#Ex2] || <math qid="Q3998">\int_{0}^{\infty}\StruveH{1}@{t}\,\frac{\diff{t}}{t^{2}} = \tfrac{1}{4}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{1}@{t}\,\frac{\diff{t}}{t^{2}} = \tfrac{1}{4}\pi</syntaxhighlight> || <math>\realpart@@{(n+1+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(1, t)*(1)/((t)^(2)), t = 0..infinity) = (1)/(4)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[1, t]*Divide[1,(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4]*Pi</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E9 11.7.E9] || [[Item:Q3999|<math>\int_{0}^{\infty}\StruveH{\nu}@{t}\diff{t} = -\cot@{\tfrac{1}{2}\pi\nu}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{\nu}@{t}\diff{t} = -\cot@{\tfrac{1}{2}\pi\nu}</syntaxhighlight> || <math>-2 < \realpart@@{\nu}, \realpart@@{\nu} < 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(nu, t), t = 0..infinity) = - cot((1)/(2)*Pi*nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Cot[Divide[1,2]*Pi*\[Nu]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 4]
| [https://dlmf.nist.gov/11.7.E9 11.7.E9] || <math qid="Q3999">\int_{0}^{\infty}\StruveH{\nu}@{t}\diff{t} = -\cot@{\tfrac{1}{2}\pi\nu}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}\StruveH{\nu}@{t}\diff{t} = -\cot@{\tfrac{1}{2}\pi\nu}</syntaxhighlight> || <math>-2 < \realpart@@{\nu}, \realpart@@{\nu} < 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(StruveH(nu, t), t = 0..infinity) = - cot((1)/(2)*Pi*nu)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Cot[Divide[1,2]*Pi*\[Nu]]</syntaxhighlight> || Successful || Aborted || - || Successful [Tested: 4]
|-  
|-  
| [https://dlmf.nist.gov/11.7.E10 11.7.E10] || [[Item:Q4000|<math>\int_{0}^{\infty}t^{-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\pi}{2^{\nu+1}\EulerGamma@{\nu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\pi}{2^{\nu+1}\EulerGamma@{\nu+1}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{3}{2}, \realpart@@{(\nu+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- nu - 1)* StruveH(nu, t), t = 0..infinity) = (Pi)/((2)^(nu + 1)* GAMMA(nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,(2)^(\[Nu]+ 1)* Gamma[\[Nu]+ 1]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/11.7.E10 11.7.E10] || <math qid="Q4000">\int_{0}^{\infty}t^{-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\pi}{2^{\nu+1}\EulerGamma@{\nu+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\pi}{2^{\nu+1}\EulerGamma@{\nu+1}}</syntaxhighlight> || <math>\realpart@@{\nu} > -\tfrac{3}{2}, \realpart@@{(\nu+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- nu - 1)* StruveH(nu, t), t = 0..infinity) = (Pi)/((2)^(nu + 1)* GAMMA(nu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,(2)^(\[Nu]+ 1)* Gamma[\[Nu]+ 1]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.7.E11 11.7.E11] || [[Item:Q4001|<math>\int_{0}^{\infty}t^{\mu-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\EulerGamma@{\tfrac{1}{2}\mu}2^{\mu-\nu-1}\tan@{\tfrac{1}{2}\pi\mu}}{\EulerGamma@{\nu-\tfrac{1}{2}\mu+1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\EulerGamma@{\tfrac{1}{2}\mu}2^{\mu-\nu-1}\tan@{\tfrac{1}{2}\pi\mu}}{\EulerGamma@{\nu-\tfrac{1}{2}\mu+1}}</syntaxhighlight> || <math>|\realpart@@{\mu}| < 1, \realpart@@{\nu} > \realpart@@{\mu}-\tfrac{3}{2}, \realpart@@{(\tfrac{1}{2}\mu)} > 0, \realpart@@{(\nu-\tfrac{1}{2}\mu+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - nu - 1)* StruveH(nu, t), t = 0..infinity) = (GAMMA((1)/(2)*mu)*(2)^(mu - nu - 1)* tan((1)/(2)*Pi*mu))/(GAMMA(nu -(1)/(2)*mu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Mu]]*(2)^(\[Mu]- \[Nu]- 1)* Tan[Divide[1,2]*Pi*\[Mu]],Gamma[\[Nu]-Divide[1,2]*\[Mu]+ 1]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/11.7.E11 11.7.E11] || <math qid="Q4001">\int_{0}^{\infty}t^{\mu-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\EulerGamma@{\tfrac{1}{2}\mu}2^{\mu-\nu-1}\tan@{\tfrac{1}{2}\pi\mu}}{\EulerGamma@{\nu-\tfrac{1}{2}\mu+1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{\mu-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\EulerGamma@{\tfrac{1}{2}\mu}2^{\mu-\nu-1}\tan@{\tfrac{1}{2}\pi\mu}}{\EulerGamma@{\nu-\tfrac{1}{2}\mu+1}}</syntaxhighlight> || <math>|\realpart@@{\mu}| < 1, \realpart@@{\nu} > \realpart@@{\mu}-\tfrac{3}{2}, \realpart@@{(\tfrac{1}{2}\mu)} > 0, \realpart@@{(\nu-\tfrac{1}{2}\mu+1)} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(mu - nu - 1)* StruveH(nu, t), t = 0..infinity) = (GAMMA((1)/(2)*mu)*(2)^(mu - nu - 1)* tan((1)/(2)*Pi*mu))/(GAMMA(nu -(1)/(2)*mu + 1))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(\[Mu]- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Mu]]*(2)^(\[Mu]- \[Nu]- 1)* Tan[Divide[1,2]*Pi*\[Mu]],Gamma[\[Nu]-Divide[1,2]*\[Mu]+ 1]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.7.E12 11.7.E12] || [[Item:Q4002|<math>\int_{0}^{\infty}t^{-\mu-\nu}\StruveH{\mu}@{t}\StruveH{\nu}@{t}\diff{t} = \frac{\sqrt{\pi}\EulerGamma@{\mu+\nu}}{2^{\mu+\nu}\EulerGamma@{\mu+\nu+\tfrac{1}{2}}\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-\mu-\nu}\StruveH{\mu}@{t}\StruveH{\nu}@{t}\diff{t} = \frac{\sqrt{\pi}\EulerGamma@{\mu+\nu}}{2^{\mu+\nu}\EulerGamma@{\mu+\nu+\tfrac{1}{2}}\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu+\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+(\mu)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- mu - nu)* StruveH(mu, t)*StruveH(nu, t), t = 0..infinity) = (sqrt(Pi)*GAMMA(mu + nu))/((2)^(mu + nu)* GAMMA(mu + nu +(1)/(2))*GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- \[Mu]- \[Nu])* StruveH[\[Mu], t]*StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*Gamma[\[Mu]+ \[Nu]],(2)^(\[Mu]+ \[Nu])* Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
| [https://dlmf.nist.gov/11.7.E12 11.7.E12] || <math qid="Q4002">\int_{0}^{\infty}t^{-\mu-\nu}\StruveH{\mu}@{t}\StruveH{\nu}@{t}\diff{t} = \frac{\sqrt{\pi}\EulerGamma@{\mu+\nu}}{2^{\mu+\nu}\EulerGamma@{\mu+\nu+\tfrac{1}{2}}\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}t^{-\mu-\nu}\StruveH{\mu}@{t}\StruveH{\nu}@{t}\diff{t} = \frac{\sqrt{\pi}\EulerGamma@{\mu+\nu}}{2^{\mu+\nu}\EulerGamma@{\mu+\nu+\tfrac{1}{2}}\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}</syntaxhighlight> || <math>\realpart@{\mu+\nu} > 0, \realpart@@{(\mu+\nu)} > 0, \realpart@@{(\mu+\nu+\tfrac{1}{2})} > 0, \realpart@@{(\mu+\tfrac{1}{2})} > 0, \realpart@@{(\nu+\tfrac{1}{2})} > 0, \realpart@@{(n+(\mu)+\tfrac{3}{2})} > 0, \realpart@@{(n+\nu+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int((t)^(- mu - nu)* StruveH(mu, t)*StruveH(nu, t), t = 0..infinity) = (sqrt(Pi)*GAMMA(mu + nu))/((2)^(mu + nu)* GAMMA(mu + nu +(1)/(2))*GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[(t)^(- \[Mu]- \[Nu])* StruveH[\[Mu], t]*StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*Gamma[\[Mu]+ \[Nu]],(2)^(\[Mu]+ \[Nu])* Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]]</syntaxhighlight> || Successful || Aborted || - || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/11.7.E13 11.7.E13] || [[Item:Q4003|<math>\int_{0}^{\infty}e^{-at}\StruveH{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\StruveH{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveH(0, t), t = 0..infinity) = (2)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveH[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.109400392*I
| [https://dlmf.nist.gov/11.7.E13 11.7.E13] || <math qid="Q4003">\int_{0}^{\infty}e^{-at}\StruveH{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\StruveH{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveH(0, t), t = 0..infinity) = (2)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveH[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]</syntaxhighlight> || Failure || Aborted || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 0.-1.109400392*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7e-9-1.788854381*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7e-9-1.788854381*I
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-8.326672684688674*^-17, -1.1094003924504583]
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-8.326672684688674*^-17, -1.1094003924504583]
Line 56: Line 56:
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.7.E14 11.7.E14] || [[Item:Q4004|<math>\int_{0}^{\infty}e^{-at}\StruveH{1}@{t}\diff{t} = \frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\StruveH{1}@{t}\diff{t} = \frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</syntaxhighlight> || <math>\realpart@@{(n+1+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveH(1, t), t = 0..infinity) = (2)/(Pi*a)-(2*a)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveH[1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*a]-Divide[2*a,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1865480398-1.664100588*I
| [https://dlmf.nist.gov/11.7.E14 11.7.E14] || <math qid="Q4004">\int_{0}^{\infty}e^{-at}\StruveH{1}@{t}\diff{t} = \frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\StruveH{1}@{t}\diff{t} = \frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}</syntaxhighlight> || <math>\realpart@@{(n+1+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveH(1, t), t = 0..infinity) = (2)/(Pi*a)-(2*a)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveH[1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*a]-Divide[2*a,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1865480398-1.664100588*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.724458563-.8944271906*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.724458563-.8944271906*I
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-5.551115123125783*^-17, -1.6641005886756874]
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-5.551115123125783*^-17, -1.6641005886756874]
Line 62: Line 62:
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[a, -0.5]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/11.7.E15 11.7.E15] || [[Item:Q4005|<math>\int_{0}^{\infty}e^{-at}\modStruveL{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{a^{2}\!-\!1}}\asin@{\frac{1}{a}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\modStruveL{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{a^{2}\!-\!1}}\asin@{\frac{1}{a}}</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveL(0, t), t = 0..infinity) = (2)/(Pi*sqrt((a)^(2)- 1))*arcsin((1)/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveL[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[(a)^(2)- 1]]*ArcSin[Divide[1,a]]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8310285000-.2578603735e-9*I
| [https://dlmf.nist.gov/11.7.E15 11.7.E15] || <math qid="Q4005">\int_{0}^{\infty}e^{-at}\modStruveL{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{a^{2}\!-\!1}}\asin@{\frac{1}{a}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{0}^{\infty}e^{-at}\modStruveL{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{a^{2}\!-\!1}}\asin@{\frac{1}{a}}</syntaxhighlight> || <math>\realpart@@{(n+0+\tfrac{3}{2})} > 0</math> || <syntaxhighlight lang=mathematica>int(exp(- a*t)*StruveL(0, t), t = 0..infinity) = (2)/(Pi*sqrt((a)^(2)- 1))*arcsin((1)/(a))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Exp[- a*t]*StruveL[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[(a)^(2)- 1]]*ArcSin[Divide[1,a]]</syntaxhighlight> || Failure || Successful || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 6]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .8310285000-.2578603735e-9*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.936205180+0.*I
Test Values: {a = -3/2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.936205180+0.*I
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 6]
Test Values: {a = -1/2}</syntaxhighlight><br>... skip entries to safe data</div></div> || Successful [Tested: 6]
|-  
|-  
| [https://dlmf.nist.gov/11.7#Ex4 11.7#Ex4] || [[Item:Q4007|<math> = \frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\atan@{\frac{1}{\sqrt{a^{2}\!-\!1}}}-\frac{2}{\pi a}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline> = \frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\atan@{\frac{1}{\sqrt{a^{2}\!-\!1}}}-\frac{2}{\pi a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>= (2*a)/(Pi*sqrt((a)^(2)- 1))*arctan((1)/(sqrt((a)^(2)- 1)))-(2)/(Pi*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>== Divide[2*a,Pi*Sqrt[(a)^(2)- 1]]*ArcTan[Divide[1,Sqrt[(a)^(2)- 1]]]-Divide[2,Pi*a]</syntaxhighlight> || Error || Failure || - || Error
| [https://dlmf.nist.gov/11.7#Ex4 11.7#Ex4] || <math qid="Q4007"> = \frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\atan@{\frac{1}{\sqrt{a^{2}\!-\!1}}}-\frac{2}{\pi a}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline> = \frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\atan@{\frac{1}{\sqrt{a^{2}\!-\!1}}}-\frac{2}{\pi a}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>= (2*a)/(Pi*sqrt((a)^(2)- 1))*arctan((1)/(sqrt((a)^(2)- 1)))-(2)/(Pi*a)</syntaxhighlight> || <syntaxhighlight lang=mathematica>== Divide[2*a,Pi*Sqrt[(a)^(2)- 1]]*ArcTan[Divide[1,Sqrt[(a)^(2)- 1]]]-Divide[2,Pi*a]</syntaxhighlight> || Error || Failure || - || Error
|}
|}
</div>
</div>

Latest revision as of 11:29, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
11.7.E1 z ν 𝐇 ν - 1 ( z ) d z = z ν 𝐇 ν ( z ) superscript 𝑧 𝜈 Struve-H 𝜈 1 𝑧 𝑧 superscript 𝑧 𝜈 Struve-H 𝜈 𝑧 {\displaystyle{\displaystyle\int z^{\nu}\mathbf{H}_{\nu-1}\left(z\right)% \mathrm{d}z=z^{\nu}\mathbf{H}_{\nu}\left(z\right)}}
\int z^{\nu}\StruveH{\nu-1}@{z}\diff{z} = z^{\nu}\StruveH{\nu}@{z}
( n + ( ν - 1 ) + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝑛 𝜈 1 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(n+(\nu-1)+\tfrac{3}{2})>0,\Re(n+\nu+\tfrac{3}{% 2})>0}}
int((z)^(nu)* StruveH(nu - 1, z), z) = (z)^(nu)* StruveH(nu, z)
Integrate[(z)^\[Nu]* StruveH[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveH[\[Nu], z]
Successful Successful - Successful [Tested: 70]
11.7.E2 z - ν 𝐇 ν + 1 ( z ) d z = - z - ν 𝐇 ν ( z ) + 2 - ν z π Γ ( ν + 3 2 ) superscript 𝑧 𝜈 Struve-H 𝜈 1 𝑧 𝑧 superscript 𝑧 𝜈 Struve-H 𝜈 𝑧 superscript 2 𝜈 𝑧 𝜋 Euler-Gamma 𝜈 3 2 {\displaystyle{\displaystyle\int z^{-\nu}\mathbf{H}_{\nu+1}\left(z\right)% \mathrm{d}z=-z^{-\nu}\mathbf{H}_{\nu}\left(z\right)+\frac{2^{-\nu}z}{\sqrt{\pi% }\Gamma\left(\nu+\tfrac{3}{2}\right)}}}
\int z^{-\nu}\StruveH{\nu+1}@{z}\diff{z} = -z^{-\nu}\StruveH{\nu}@{z}+\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}
( ν + 3 2 ) > 0 , ( n + ( ν + 1 ) + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 3 2 0 formulae-sequence 𝑛 𝜈 1 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(\nu+\tfrac{3}{2})>0,\Re(n+(\nu+1)+\tfrac{3}{2}% )>0,\Re(n+\nu+\tfrac{3}{2})>0}}
int((z)^(- nu)* StruveH(nu + 1, z), z) = - (z)^(- nu)* StruveH(nu, z)+((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))
Integrate[(z)^(- \[Nu])* StruveH[\[Nu]+ 1, z], z, GenerateConditions->None] == - (z)^(- \[Nu])* StruveH[\[Nu], z]+Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]
Successful Successful - Successful [Tested: 56]
11.7.E3 z ν 𝐋 ν - 1 ( z ) d z = z ν 𝐋 ν ( z ) superscript 𝑧 𝜈 modified-Struve-L 𝜈 1 𝑧 𝑧 superscript 𝑧 𝜈 modified-Struve-L 𝜈 𝑧 {\displaystyle{\displaystyle\int z^{\nu}\mathbf{L}_{\nu-1}\left(z\right)% \mathrm{d}z=z^{\nu}\mathbf{L}_{\nu}\left(z\right)}}
\int z^{\nu}\modStruveL{\nu-1}@{z}\diff{z} = z^{\nu}\modStruveL{\nu}@{z}
( n + ( ν - 1 ) + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝑛 𝜈 1 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(n+(\nu-1)+\tfrac{3}{2})>0,\Re(n+\nu+\tfrac{3}{% 2})>0}}
int((z)^(nu)* StruveL(nu - 1, z), z) = (z)^(nu)* StruveL(nu, z)
Integrate[(z)^\[Nu]* StruveL[\[Nu]- 1, z], z, GenerateConditions->None] == (z)^\[Nu]* StruveL[\[Nu], z]
Failure Successful
Failed [4 / 70]
Result: 15.74633170+6.711214442*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1573.901952-547.1907270*I
Test Values: {nu = -1/2+1/2*I*3^(1/2), z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 70]
11.7.E4 z - ν 𝐋 ν + 1 ( z ) d z = z - ν 𝐋 ν ( z ) - 2 - ν z π Γ ( ν + 3 2 ) superscript 𝑧 𝜈 modified-Struve-L 𝜈 1 𝑧 𝑧 superscript 𝑧 𝜈 modified-Struve-L 𝜈 𝑧 superscript 2 𝜈 𝑧 𝜋 Euler-Gamma 𝜈 3 2 {\displaystyle{\displaystyle\int z^{-\nu}\mathbf{L}_{\nu+1}\left(z\right)% \mathrm{d}z=z^{-\nu}\mathbf{L}_{\nu}\left(z\right)-\frac{2^{-\nu}z}{\sqrt{\pi}% \Gamma\left(\nu+\tfrac{3}{2}\right)}}}
\int z^{-\nu}\modStruveL{\nu+1}@{z}\diff{z} = z^{-\nu}\modStruveL{\nu}@{z}-\frac{2^{-\nu}z}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}
( ν + 3 2 ) > 0 , ( n + ( ν + 1 ) + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 3 2 0 formulae-sequence 𝑛 𝜈 1 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(\nu+\tfrac{3}{2})>0,\Re(n+(\nu+1)+\tfrac{3}{2}% )>0,\Re(n+\nu+\tfrac{3}{2})>0}}
int((z)^(- nu)* StruveL(nu + 1, z), z) = (z)^(- nu)* StruveL(nu, z)-((2)^(- nu)* z)/(sqrt(Pi)*GAMMA(nu +(3)/(2)))
Integrate[(z)^(- \[Nu])* StruveL[\[Nu]+ 1, z], z, GenerateConditions->None] == (z)^(- \[Nu])* StruveL[\[Nu], z]-Divide[(2)^(- \[Nu])* z,Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]
Successful Successful - Successful [Tested: 56]
11.7.E5 f ν ( z ) = 0 z t ν 𝐇 ν ( t ) d t subscript 𝑓 𝜈 𝑧 superscript subscript 0 𝑧 superscript 𝑡 𝜈 Struve-H 𝜈 𝑡 𝑡 {\displaystyle{\displaystyle f_{\nu}(z)=\int_{0}^{z}t^{\nu}\mathbf{H}_{\nu}% \left(t\right)\mathrm{d}t}}
f_{\nu}(z) = \int_{0}^{z}t^{\nu}\StruveH{\nu}@{t}\diff{t}
( n + ν + 3 2 ) > 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re(n+\nu+\tfrac{3}{2})>0}}
f[nu](z) = int((t)^(nu)* StruveH(nu, t), t = 0..z)
Subscript[f, \[Nu]][z] == Integrate[(t)^\[Nu]* StruveH[\[Nu], t], {t, 0, z}, GenerateConditions->None]
Failure Failure
Failed [300 / 300]
Result: .4776177026+.8322237517*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I}

Result: -.8884077018+.4661983481*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.4776177021895665, 0.8322237514648603]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.8884077015948724, 0.4661983476804216]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
11.7.E6 f ν + 1 ( z ) = ( 2 ν + 1 ) f ν ( z ) - z ν + 1 𝐇 ν ( z ) + ( 1 2 z 2 ) ν + 1 ( ν + 1 ) π Γ ( ν + 3 2 ) subscript 𝑓 𝜈 1 𝑧 2 𝜈 1 subscript 𝑓 𝜈 𝑧 superscript 𝑧 𝜈 1 Struve-H 𝜈 𝑧 superscript 1 2 superscript 𝑧 2 𝜈 1 𝜈 1 𝜋 Euler-Gamma 𝜈 3 2 {\displaystyle{\displaystyle f_{\nu+1}(z)=(2\nu+1)f_{\nu}(z)-z^{\nu+1}\mathbf{% H}_{\nu}\left(z\right)+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}% \Gamma\left(\nu+\tfrac{3}{2}\right)}}}
f_{\nu+1}(z) = (2\nu+1)f_{\nu}(z)-z^{\nu+1}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z^{2})^{\nu+1}}{(\nu+1)\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}
ν > - 1 , ( ν + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 1 formulae-sequence 𝜈 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-1,\Re(\nu+\tfrac{3}{2})>0,\Re(n+\nu+\tfrac% {3}{2})>0}}
f[nu + 1](z) = (2*nu + 1)*f[nu](z)- (z)^(nu + 1)* StruveH(nu, z)+(((1)/(2)*(z)^(2))^(nu + 1))/((nu + 1)*sqrt(Pi)*GAMMA(nu +(3)/(2)))
Subscript[f, \[Nu]+ 1][z] == (2*\[Nu]+ 1)*Subscript[f, \[Nu]][z]- (z)^(\[Nu]+ 1)* StruveH[\[Nu], z]+Divide[(Divide[1,2]*(z)^(2))^(\[Nu]+ 1),(\[Nu]+ 1)*Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]
Failure Failure
Failed [300 / 300]
Result: .2926898254e-1-1.890529289*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = 1/2*3^(1/2)+1/2*I}

Result: -1.336756421-2.256554693*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, f[nu] = 1/2*3^(1/2)+1/2*I, f[nu+1] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.029268983232513014, -1.8905292888907776]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3367564205519258, -2.2565546926752162]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, ν], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[f, Plus[1, ν]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
11.7.E7 0 π / 2 𝐇 ν ( z sin θ ) ( sin θ ) ν + 1 ( cos θ ) 2 ν d θ = 2 - ν π Γ ( 1 2 - ν ) z ν - 1 ( 1 - cos z ) superscript subscript 0 𝜋 2 Struve-H 𝜈 𝑧 𝜃 superscript 𝜃 𝜈 1 superscript 𝜃 2 𝜈 𝜃 superscript 2 𝜈 𝜋 Euler-Gamma 1 2 𝜈 superscript 𝑧 𝜈 1 1 𝑧 {\displaystyle{\displaystyle\int_{0}^{\pi/2}\mathbf{H}_{\nu}\left(z\sin\theta% \right)\frac{(\sin\theta)^{\nu+1}}{(\cos\theta)^{2\nu}}\mathrm{d}\theta=\frac{% 2^{-\nu}}{\sqrt{\pi}}\Gamma\left(\tfrac{1}{2}-\nu\right)z^{\nu-1}(1-\cos z)}}
\int_{0}^{\pi/2}\StruveH{\nu}@{z\sin@@{\theta}}\frac{(\sin@@{\theta})^{\nu+1}}{(\cos@@{\theta})^{2\nu}}\diff{\theta} = \frac{2^{-\nu}}{\sqrt{\pi}}\EulerGamma@{\tfrac{1}{2}-\nu}z^{\nu-1}(1-\cos@@{z})
- 3 2 < ν , ν < 1 2 , ( 1 2 - ν ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 3 2 𝜈 formulae-sequence 𝜈 1 2 formulae-sequence 1 2 𝜈 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle-\tfrac{3}{2}<\Re\nu,\Re\nu<\tfrac{1}{2},\Re(% \tfrac{1}{2}-\nu)>0,\Re(n+\nu+\tfrac{3}{2})>0}}
int(StruveH(nu, z*sin(theta))*((sin(theta))^(nu + 1))/((cos(theta))^(2*nu)), theta = 0..Pi/2) = ((2)^(- nu))/(sqrt(Pi))*GAMMA((1)/(2)- nu)*(z)^(nu - 1)*(1 - cos(z))
Integrate[StruveH[\[Nu], z*Sin[\[Theta]]]*Divide[(Sin[\[Theta]])^(\[Nu]+ 1),(Cos[\[Theta]])^(2*\[Nu])], {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[(2)^(- \[Nu]),Sqrt[Pi]]*Gamma[Divide[1,2]- \[Nu]]*(z)^(\[Nu]- 1)*(1 - Cos[z])
Successful Aborted - Successful [Tested: 21]
11.7#Ex1 0 𝐇 0 ( t ) d t t = 1 2 π superscript subscript 0 Struve-H 0 𝑡 𝑡 𝑡 1 2 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}\mathbf{H}_{0}\left(t\right)\,% \frac{\mathrm{d}t}{t}=\tfrac{1}{2}\pi}}
\int_{0}^{\infty}\StruveH{0}@{t}\,\frac{\diff{t}}{t} = \tfrac{1}{2}\pi
( n + 0 + 3 2 ) > 0 𝑛 0 3 2 0 {\displaystyle{\displaystyle\Re(n+0+\tfrac{3}{2})>0}}
int(StruveH(0, t)*(1)/(t), t = 0..infinity) = (1)/(2)*Pi
Integrate[StruveH[0, t]*Divide[1,t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi
Successful Successful - Successful [Tested: 1]
11.7#Ex2 0 𝐇 1 ( t ) d t t 2 = 1 4 π superscript subscript 0 Struve-H 1 𝑡 𝑡 superscript 𝑡 2 1 4 𝜋 {\displaystyle{\displaystyle\int_{0}^{\infty}\mathbf{H}_{1}\left(t\right)\,% \frac{\mathrm{d}t}{t^{2}}=\tfrac{1}{4}\pi}}
\int_{0}^{\infty}\StruveH{1}@{t}\,\frac{\diff{t}}{t^{2}} = \tfrac{1}{4}\pi
( n + 1 + 3 2 ) > 0 𝑛 1 3 2 0 {\displaystyle{\displaystyle\Re(n+1+\tfrac{3}{2})>0}}
int(StruveH(1, t)*(1)/((t)^(2)), t = 0..infinity) = (1)/(4)*Pi
Integrate[StruveH[1, t]*Divide[1,(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,4]*Pi
Successful Successful - Successful [Tested: 1]
11.7.E9 0 𝐇 ν ( t ) d t = - cot ( 1 2 π ν ) superscript subscript 0 Struve-H 𝜈 𝑡 𝑡 1 2 𝜋 𝜈 {\displaystyle{\displaystyle\int_{0}^{\infty}\mathbf{H}_{\nu}\left(t\right)% \mathrm{d}t=-\cot\left(\tfrac{1}{2}\pi\nu\right)}}
\int_{0}^{\infty}\StruveH{\nu}@{t}\diff{t} = -\cot@{\tfrac{1}{2}\pi\nu}
- 2 < ν , ν < 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 2 𝜈 formulae-sequence 𝜈 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle-2<\Re\nu,\Re\nu<0,\Re(n+\nu+\tfrac{3}{2})>0}}
int(StruveH(nu, t), t = 0..infinity) = - cot((1)/(2)*Pi*nu)
Integrate[StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == - Cot[Divide[1,2]*Pi*\[Nu]]
Successful Aborted - Successful [Tested: 4]
11.7.E10 0 t - ν - 1 𝐇 ν ( t ) d t = π 2 ν + 1 Γ ( ν + 1 ) superscript subscript 0 superscript 𝑡 𝜈 1 Struve-H 𝜈 𝑡 𝑡 𝜋 superscript 2 𝜈 1 Euler-Gamma 𝜈 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{-\nu-1}\mathbf{H}_{\nu}\left(t% \right)\mathrm{d}t=\frac{\pi}{2^{\nu+1}\Gamma\left(\nu+1\right)}}}
\int_{0}^{\infty}t^{-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\pi}{2^{\nu+1}\EulerGamma@{\nu+1}}
ν > - 3 2 , ( ν + 1 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜈 3 2 formulae-sequence 𝜈 1 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\nu>-\tfrac{3}{2},\Re(\nu+1)>0,\Re(n+\nu+\tfrac% {3}{2})>0}}
int((t)^(- nu - 1)* StruveH(nu, t), t = 0..infinity) = (Pi)/((2)^(nu + 1)* GAMMA(nu + 1))
Integrate[(t)^(- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Pi,(2)^(\[Nu]+ 1)* Gamma[\[Nu]+ 1]]
Successful Aborted - Skipped - Because timed out
11.7.E11 0 t μ - ν - 1 𝐇 ν ( t ) d t = Γ ( 1 2 μ ) 2 μ - ν - 1 tan ( 1 2 π μ ) Γ ( ν - 1 2 μ + 1 ) superscript subscript 0 superscript 𝑡 𝜇 𝜈 1 Struve-H 𝜈 𝑡 𝑡 Euler-Gamma 1 2 𝜇 superscript 2 𝜇 𝜈 1 1 2 𝜋 𝜇 Euler-Gamma 𝜈 1 2 𝜇 1 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{\mu-\nu-1}\mathbf{H}_{\nu}% \left(t\right)\mathrm{d}t=\frac{\Gamma\left(\tfrac{1}{2}\mu\right)2^{\mu-\nu-1% }\tan\left(\tfrac{1}{2}\pi\mu\right)}{\Gamma\left(\nu-\tfrac{1}{2}\mu+1\right)% }}}
\int_{0}^{\infty}t^{\mu-\nu-1}\StruveH{\nu}@{t}\diff{t} = \frac{\EulerGamma@{\tfrac{1}{2}\mu}2^{\mu-\nu-1}\tan@{\tfrac{1}{2}\pi\mu}}{\EulerGamma@{\nu-\tfrac{1}{2}\mu+1}}
| μ | < 1 , ν > μ - 3 2 , ( 1 2 μ ) > 0 , ( ν - 1 2 μ + 1 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜇 1 formulae-sequence 𝜈 𝜇 3 2 formulae-sequence 1 2 𝜇 0 formulae-sequence 𝜈 1 2 𝜇 1 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle|\Re\mu|<1,\Re\nu>\Re\mu-\tfrac{3}{2},\Re(\tfrac{1% }{2}\mu)>0,\Re(\nu-\tfrac{1}{2}\mu+1)>0,\Re(n+\nu+\tfrac{3}{2})>0}}
int((t)^(mu - nu - 1)* StruveH(nu, t), t = 0..infinity) = (GAMMA((1)/(2)*mu)*(2)^(mu - nu - 1)* tan((1)/(2)*Pi*mu))/(GAMMA(nu -(1)/(2)*mu + 1))
Integrate[(t)^(\[Mu]- \[Nu]- 1)* StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Gamma[Divide[1,2]*\[Mu]]*(2)^(\[Mu]- \[Nu]- 1)* Tan[Divide[1,2]*Pi*\[Mu]],Gamma[\[Nu]-Divide[1,2]*\[Mu]+ 1]]
Successful Aborted - Skipped - Because timed out
11.7.E12 0 t - μ - ν 𝐇 μ ( t ) 𝐇 ν ( t ) d t = π Γ ( μ + ν ) 2 μ + ν Γ ( μ + ν + 1 2 ) Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) superscript subscript 0 superscript 𝑡 𝜇 𝜈 Struve-H 𝜇 𝑡 Struve-H 𝜈 𝑡 𝑡 𝜋 Euler-Gamma 𝜇 𝜈 superscript 2 𝜇 𝜈 Euler-Gamma 𝜇 𝜈 1 2 Euler-Gamma 𝜇 1 2 Euler-Gamma 𝜈 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}t^{-\mu-\nu}\mathbf{H}_{\mu}\left% (t\right)\mathbf{H}_{\nu}\left(t\right)\mathrm{d}t=\frac{\sqrt{\pi}\Gamma\left% (\mu+\nu\right)}{2^{\mu+\nu}\Gamma\left(\mu+\nu+\tfrac{1}{2}\right)\Gamma\left% (\mu+\tfrac{1}{2}\right)\Gamma\left(\nu+\tfrac{1}{2}\right)}}}
\int_{0}^{\infty}t^{-\mu-\nu}\StruveH{\mu}@{t}\StruveH{\nu}@{t}\diff{t} = \frac{\sqrt{\pi}\EulerGamma@{\mu+\nu}}{2^{\mu+\nu}\EulerGamma@{\mu+\nu+\tfrac{1}{2}}\EulerGamma@{\mu+\tfrac{1}{2}}\EulerGamma@{\nu+\tfrac{1}{2}}}
( μ + ν ) > 0 , ( μ + ν ) > 0 , ( μ + ν + 1 2 ) > 0 , ( μ + 1 2 ) > 0 , ( ν + 1 2 ) > 0 , ( n + ( μ ) + 3 2 ) > 0 , ( n + ν + 3 2 ) > 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence 𝜇 𝜈 0 formulae-sequence 𝜇 𝜈 1 2 0 formulae-sequence 𝜇 1 2 0 formulae-sequence 𝜈 1 2 0 formulae-sequence 𝑛 𝜇 3 2 0 𝑛 𝜈 3 2 0 {\displaystyle{\displaystyle\Re\left(\mu+\nu\right)>0,\Re(\mu+\nu)>0,\Re(\mu+% \nu+\tfrac{1}{2})>0,\Re(\mu+\tfrac{1}{2})>0,\Re(\nu+\tfrac{1}{2})>0,\Re(n+(\mu% )+\tfrac{3}{2})>0,\Re(n+\nu+\tfrac{3}{2})>0}}
int((t)^(- mu - nu)* StruveH(mu, t)*StruveH(nu, t), t = 0..infinity) = (sqrt(Pi)*GAMMA(mu + nu))/((2)^(mu + nu)* GAMMA(mu + nu +(1)/(2))*GAMMA(mu +(1)/(2))*GAMMA(nu +(1)/(2)))
Integrate[(t)^(- \[Mu]- \[Nu])* StruveH[\[Mu], t]*StruveH[\[Nu], t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*Gamma[\[Mu]+ \[Nu]],(2)^(\[Mu]+ \[Nu])* Gamma[\[Mu]+ \[Nu]+Divide[1,2]]*Gamma[\[Mu]+Divide[1,2]]*Gamma[\[Nu]+Divide[1,2]]]
Successful Aborted - Skipped - Because timed out
11.7.E13 0 e - a t 𝐇 0 ( t ) d t = 2 π 1 + a 2 ln ( 1 + 1 + a 2 a ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 Struve-H 0 𝑡 𝑡 2 𝜋 1 superscript 𝑎 2 1 1 superscript 𝑎 2 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}\mathbf{H}_{0}\left(t% \right)\mathrm{d}t=\frac{2}{\pi\sqrt{1+a^{2}}}\ln\left(\frac{1+\sqrt{1+a^{2}}}% {a}\right)}}
\int_{0}^{\infty}e^{-at}\StruveH{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}
( n + 0 + 3 2 ) > 0 𝑛 0 3 2 0 {\displaystyle{\displaystyle\Re(n+0+\tfrac{3}{2})>0}}
int(exp(- a*t)*StruveH(0, t), t = 0..infinity) = (2)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))
Integrate[Exp[- a*t]*StruveH[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]
Failure Aborted
Failed [3 / 6]
Result: 0.-1.109400392*I
Test Values: {a = -3/2}

Result: .7e-9-1.788854381*I
Test Values: {a = -1/2}

... skip entries to safe data
Failed [3 / 6]
Result: Complex[-8.326672684688674*^-17, -1.1094003924504583]
Test Values: {Rule[a, -1.5]}

Result: Complex[0.0, -1.7888543819998317]
Test Values: {Rule[a, -0.5]}

... skip entries to safe data
11.7.E14 0 e - a t 𝐇 1 ( t ) d t = 2 π a - 2 a π 1 + a 2 ln ( 1 + 1 + a 2 a ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 Struve-H 1 𝑡 𝑡 2 𝜋 𝑎 2 𝑎 𝜋 1 superscript 𝑎 2 1 1 superscript 𝑎 2 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}\mathbf{H}_{1}\left(t% \right)\mathrm{d}t=\frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln\left(\frac{% 1+\sqrt{1+a^{2}}}{a}\right)}}
\int_{0}^{\infty}e^{-at}\StruveH{1}@{t}\diff{t} = \frac{2}{\pi a}-\frac{2a}{\pi\sqrt{1+a^{2}}}\ln@{\frac{1+\sqrt{1+a^{2}}}{a}}
( n + 1 + 3 2 ) > 0 𝑛 1 3 2 0 {\displaystyle{\displaystyle\Re(n+1+\tfrac{3}{2})>0}}
int(exp(- a*t)*StruveH(1, t), t = 0..infinity) = (2)/(Pi*a)-(2*a)/(Pi*sqrt(1 + (a)^(2)))*ln((1 +sqrt(1 + (a)^(2)))/(a))
Integrate[Exp[- a*t]*StruveH[1, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*a]-Divide[2*a,Pi*Sqrt[1 + (a)^(2)]]*Log[Divide[1 +Sqrt[1 + (a)^(2)],a]]
Failure Failure
Failed [3 / 6]
Result: .1865480398-1.664100588*I
Test Values: {a = -3/2}

Result: 1.724458563-.8944271906*I
Test Values: {a = -1/2}

... skip entries to safe data
Failed [3 / 6]
Result: Complex[-5.551115123125783*^-17, -1.6641005886756874]
Test Values: {Rule[a, -1.5]}

Result: Complex[1.1102230246251565*^-16, -0.8944271909999159]
Test Values: {Rule[a, -0.5]}

... skip entries to safe data
11.7.E15 0 e - a t 𝐋 0 ( t ) d t = 2 π a 2 - 1 arcsin ( 1 a ) superscript subscript 0 superscript 𝑒 𝑎 𝑡 modified-Struve-L 0 𝑡 𝑡 2 𝜋 superscript 𝑎 2 1 1 𝑎 {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-at}\mathbf{L}_{0}\left(t% \right)\mathrm{d}t=\frac{2}{\pi\sqrt{a^{2}\!-\!1}}\operatorname{arcsin}\left(% \frac{1}{a}\right)}}
\int_{0}^{\infty}e^{-at}\modStruveL{0}@{t}\diff{t} = \frac{2}{\pi\sqrt{a^{2}\!-\!1}}\asin@{\frac{1}{a}}
( n + 0 + 3 2 ) > 0 𝑛 0 3 2 0 {\displaystyle{\displaystyle\Re(n+0+\tfrac{3}{2})>0}}
int(exp(- a*t)*StruveL(0, t), t = 0..infinity) = (2)/(Pi*sqrt((a)^(2)- 1))*arcsin((1)/(a))
Integrate[Exp[- a*t]*StruveL[0, t], {t, 0, Infinity}, GenerateConditions->None] == Divide[2,Pi*Sqrt[(a)^(2)- 1]]*ArcSin[Divide[1,a]]
Failure Successful
Failed [4 / 6]
Result: .8310285000-.2578603735e-9*I
Test Values: {a = -3/2}

Result: -1.936205180+0.*I
Test Values: {a = -1/2}

... skip entries to safe data
Successful [Tested: 6]
11.7#Ex4 = 2 a π a 2 - 1 arctan ( 1 a 2 - 1 ) - 2 π a absent 2 𝑎 𝜋 superscript 𝑎 2 1 1 superscript 𝑎 2 1 2 𝜋 𝑎 {\displaystyle{\displaystyle=\frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\operatorname{% arctan}\left(\frac{1}{\sqrt{a^{2}\!-\!1}}\right)-\frac{2}{\pi a}}}
= \frac{2a}{\pi\sqrt{a^{2}\!-\!1}}\atan@{\frac{1}{\sqrt{a^{2}\!-\!1}}}-\frac{2}{\pi a}

= (2*a)/(Pi*sqrt((a)^(2)- 1))*arctan((1)/(sqrt((a)^(2)- 1)))-(2)/(Pi*a)
== Divide[2*a,Pi*Sqrt[(a)^(2)- 1]]*ArcTan[Divide[1,Sqrt[(a)^(2)- 1]]]-Divide[2,Pi*a]
Error Failure - Error