12.10: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex1 12.10#Ex1] || [[Item:Q4154|<math>a = +\tfrac{1}{2}\mu^{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a = +\tfrac{1}{2}\mu^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a = +(1)/(2)*(mu)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a == +Divide[1,2]*\[Mu]^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex1 12.10#Ex1] || <math qid="Q4154">a = +\tfrac{1}{2}\mu^{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a = +\tfrac{1}{2}\mu^{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a = +(1)/(2)*(mu)^(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a == +Divide[1,2]*\[Mu]^(2)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex2 12.10#Ex2] || [[Item:Q4155|<math>x = \mu t\sqrt{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x = \mu t\sqrt{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x = mu*t*sqrt(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x == \[Mu]*t*Sqrt[2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex2 12.10#Ex2] || <math qid="Q4155">x = \mu t\sqrt{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>x = \mu t\sqrt{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x = mu*t*sqrt(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">x == \[Mu]*t*Sqrt[2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/12.10.E2 12.10.E2] || [[Item:Q4156|<math>\deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)+ 1)*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)+ 1)*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.814582564-1.625000003*I
| [https://dlmf.nist.gov/12.10.E2 12.10.E2] || <math qid="Q4156">\deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)+ 1)*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)+ 1)*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 2.814582564-1.625000003*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.625000003+2.814582564*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.625000003+2.814582564*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.814582562299425, -1.6250000000000009]
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.814582562299425, -1.6250000000000009]
Line 24: Line 24:
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/12.10.E2 12.10.E2] || [[Item:Q4156|<math>\deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)- 1)*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)- 1)*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.082531755-.6250000011*I
| [https://dlmf.nist.gov/12.10.E2 12.10.E2] || <math qid="Q4156">\deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)- 1)*w</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)- 1)*w</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 1.082531755-.6250000011*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000011+1.082531755*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6250000011+1.082531755*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0825317547305482, -0.6250000000000002]
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[1.0825317547305482, -0.6250000000000002]
Line 30: Line 30:
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10.E13 12.10.E13] || [[Item:Q4171|<math>v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">v[s](t) = u[s](t)+(1)/(2)*tu[s - 1](t)- r[s - 2](t)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[v, s][t] == Subscript[u, s][t]+Divide[1,2]*Subscript[tu, s - 1][t]- Subscript[r, s - 2][t]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10.E13 12.10.E13] || <math qid="Q4171">v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">v[s](t) = u[s](t)+(1)/(2)*tu[s - 1](t)- r[s - 2](t)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[v, s][t] == Subscript[u, s][t]+Divide[1,2]*Subscript[tu, s - 1][t]- Subscript[r, s - 2][t]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex9 12.10#Ex9] || [[Item:Q4175|<math>\gamma_{0} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[0] = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex9 12.10#Ex9] || <math qid="Q4175">\gamma_{0} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{0} = 1</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[0] = 1</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 0] == 1</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex10 12.10#Ex10] || [[Item:Q4176|<math>\gamma_{1} = -\tfrac{1}{24}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{1} = -\tfrac{1}{24}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[1] = -(1)/(24)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 1] == -Divide[1,24]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex10 12.10#Ex10] || <math qid="Q4176">\gamma_{1} = -\tfrac{1}{24}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{1} = -\tfrac{1}{24}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[1] = -(1)/(24)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 1] == -Divide[1,24]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex11 12.10#Ex11] || [[Item:Q4177|<math>\gamma_{2} = \tfrac{1}{1152}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{2} = \tfrac{1}{1152}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[2] = (1)/(1152)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 2] == Divide[1,1152]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex11 12.10#Ex11] || <math qid="Q4177">\gamma_{2} = \tfrac{1}{1152}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{2} = \tfrac{1}{1152}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[2] = (1)/(1152)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 2] == Divide[1,1152]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex12 12.10#Ex12] || [[Item:Q4178|<math>\gamma_{3} = \tfrac{1003}{4\;14720}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{3} = \tfrac{1003}{4\;14720}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[3] = (1003)/(414720)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 3] == Divide[1003,414720]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex12 12.10#Ex12] || <math qid="Q4178">\gamma_{3} = \tfrac{1003}{4\;14720}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{3} = \tfrac{1003}{4\;14720}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[3] = (1003)/(414720)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 3] == Divide[1003,414720]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex13 12.10#Ex13] || [[Item:Q4179|<math>\gamma_{4} = -\tfrac{4027}{398\;13120}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{4} = -\tfrac{4027}{398\;13120}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[4] = -(4027)/(39813120)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 4] == -Divide[4027,39813120]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex13 12.10#Ex13] || <math qid="Q4179">\gamma_{4} = -\tfrac{4027}{398\;13120}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\gamma_{4} = -\tfrac{4027}{398\;13120}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">gamma[4] = -(4027)/(39813120)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Gamma], 4] == -Divide[4027,39813120]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex18 12.10#Ex18] || [[Item:Q4198|<math>\mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[1]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = -(1)/(12)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))*(20*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 30*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 9)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 1]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == -Divide[1,12]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))*(20*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 30*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 9)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex18 12.10#Ex18] || <math qid="Q4198">\mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[1]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = -(1)/(12)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))*(20*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 30*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 9)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 1]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == -Divide[1,12]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))*(20*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 30*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 9)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex19 12.10#Ex19] || [[Item:Q4199|<math>\mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[2]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = (1)/(288)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)*(6160*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(4)+ 18480*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(3)+ 19404*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 8028*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 945)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 2]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == Divide[1,288]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)*(6160*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(4)+ 18480*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(3)+ 19404*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 8028*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 945)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex19 12.10#Ex19] || <math qid="Q4199">\mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[2]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = (1)/(288)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)*(6160*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(4)+ 18480*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(3)+ 19404*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 8028*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 945)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, 2]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == Divide[1,288]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)*(6160*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(4)+ 18480*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(3)+ 19404*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 8028*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 945)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex22 12.10#Ex22] || [[Item:Q4208|<math>A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[s](zeta) = (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m))* u[2*s - m](t), m = 0..2*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m))* Subscript[u, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex22 12.10#Ex22] || <math qid="Q4208">A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A[s](zeta) = (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m))* u[2*s - m](t), m = 0..2*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[A, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m))* Subscript[u, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex23 12.10#Ex23] || [[Item:Q4209|<math>\zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(zeta)^(2)* B[s](zeta) = - (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m + 1))* u[2*s - m + 1](t), m = 0..2*s + 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Zeta]^(2)* Subscript[B, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m + 1))* Subscript[u, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex23 12.10#Ex23] || <math qid="Q4209">\zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(zeta)^(2)* B[s](zeta) = - (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m + 1))* u[2*s - m + 1](t), m = 0..2*s + 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Zeta]^(2)* Subscript[B, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m + 1))* Subscript[u, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex28 12.10#Ex28] || [[Item:Q4215|<math>\zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">zeta*C[s](zeta) = - (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m + 1))* v[2*s - m + 1](t), m = 0..2*s + 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Zeta]*Subscript[C, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m + 1))* Subscript[v, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex28 12.10#Ex28] || <math qid="Q4215">\zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">zeta*C[s](zeta) = - (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m + 1))* v[2*s - m + 1](t), m = 0..2*s + 1)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Zeta]*Subscript[C, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m + 1))* Subscript[v, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/12.10#Ex29 12.10#Ex29] || [[Item:Q4216|<math>D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">D[s](zeta) = (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m))* v[2*s - m](t), m = 0..2*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[D, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m))* Subscript[v, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/12.10#Ex29 12.10#Ex29] || <math qid="Q4216">D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">D[s](zeta) = (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m))* v[2*s - m](t), m = 0..2*s)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[D, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m))* Subscript[v, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:31, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.10#Ex1 a = + 1 2 μ 2 𝑎 1 2 superscript 𝜇 2 {\displaystyle{\displaystyle a=+\tfrac{1}{2}\mu^{2}}}
a = +\tfrac{1}{2}\mu^{2}

a = +(1)/(2)*(mu)^(2)
a == +Divide[1,2]*\[Mu]^(2)
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex2 x = μ t 2 𝑥 𝜇 𝑡 2 {\displaystyle{\displaystyle x=\mu t\sqrt{2}}}
x = \mu t\sqrt{2}

x = mu*t*sqrt(2)
x == \[Mu]*t*Sqrt[2]
Skipped - no semantic math Skipped - no semantic math - -
12.10.E2 d 2 w d t 2 = μ 4 ( t 2 + 1 ) w derivative 𝑤 𝑡 2 superscript 𝜇 4 superscript 𝑡 2 1 𝑤 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}t}^{2}}=\mu^{4% }(t^{2}+1)w}}
\deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w

diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)+ 1)*w
D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)+ 1)*w
Failure Failure
Failed [300 / 300]
Result: 2.814582564-1.625000003*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}

Result: 1.625000003+2.814582564*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[2.814582562299425, -1.6250000000000009]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.814582562299425, -1.6250000000000009]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.10.E2 d 2 w d t 2 = μ 4 ( t 2 - 1 ) w derivative 𝑤 𝑡 2 superscript 𝜇 4 superscript 𝑡 2 1 𝑤 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}t}^{2}}=\mu^{4% }(t^{2}-1)w}}
\deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w

diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)- 1)*w
D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)- 1)*w
Failure Failure
Failed [300 / 300]
Result: 1.082531755-.6250000011*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}

Result: .6250000011+1.082531755*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0825317547305482, -0.6250000000000002]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.0825317547305482, -0.6250000000000002]
Test Values: {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
12.10.E13 v s ( t ) = u s ( t ) + 1 2 t u s - 1 ( t ) - r s - 2 ( t ) subscript 𝑣 𝑠 𝑡 subscript 𝑢 𝑠 𝑡 1 2 𝑡 subscript 𝑢 𝑠 1 𝑡 subscript 𝑟 𝑠 2 𝑡 {\displaystyle{\displaystyle v_{s}(t)=u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}% (t)}}
v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)

v[s](t) = u[s](t)+(1)/(2)*tu[s - 1](t)- r[s - 2](t)
Subscript[v, s][t] == Subscript[u, s][t]+Divide[1,2]*Subscript[tu, s - 1][t]- Subscript[r, s - 2][t]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex9 γ 0 = 1 subscript 𝛾 0 1 {\displaystyle{\displaystyle\gamma_{0}=1}}
\gamma_{0} = 1

gamma[0] = 1
Subscript[\[Gamma], 0] == 1
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex10 γ 1 = - 1 24 subscript 𝛾 1 1 24 {\displaystyle{\displaystyle\gamma_{1}=-\tfrac{1}{24}}}
\gamma_{1} = -\tfrac{1}{24}

gamma[1] = -(1)/(24)
Subscript[\[Gamma], 1] == -Divide[1,24]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex11 γ 2 = 1 1152 subscript 𝛾 2 1 1152 {\displaystyle{\displaystyle\gamma_{2}=\tfrac{1}{1152}}}
\gamma_{2} = \tfrac{1}{1152}

gamma[2] = (1)/(1152)
Subscript[\[Gamma], 2] == Divide[1,1152]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex12 γ 3 = 1003 4 14720 subscript 𝛾 3 1003 4 14720 {\displaystyle{\displaystyle\gamma_{3}=\tfrac{1003}{4\;14720}}}
\gamma_{3} = \tfrac{1003}{4\;14720}

gamma[3] = (1003)/(414720)
Subscript[\[Gamma], 3] == Divide[1003,414720]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex13 γ 4 = - 4027 398 13120 subscript 𝛾 4 4027 398 13120 {\displaystyle{\displaystyle\gamma_{4}=-\tfrac{4027}{398\;13120}}}
\gamma_{4} = -\tfrac{4027}{398\;13120}

gamma[4] = -(4027)/(39813120)
Subscript[\[Gamma], 4] == -Divide[4027,39813120]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex18 𝖠 1 ( τ ) = - 1 12 τ ( 20 τ 2 + 30 τ + 9 ) subscript 𝖠 1 𝜏 1 12 𝜏 20 superscript 𝜏 2 30 𝜏 9 {\displaystyle{\displaystyle\mathsf{A}_{1}(\tau)=-\tfrac{1}{12}\tau(20\tau^{2}% +30\tau+9)}}
\mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)

A[1]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = -(1)/(12)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))*(20*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 30*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 9)
Subscript[A, 1]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == -Divide[1,12]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))*(20*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 30*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 9)
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex19 𝖠 2 ( τ ) = 1 288 τ 2 ( 6160 τ 4 + 18480 τ 3 + 19404 τ 2 + 8028 τ + 945 ) subscript 𝖠 2 𝜏 1 288 superscript 𝜏 2 6160 superscript 𝜏 4 18480 superscript 𝜏 3 19404 superscript 𝜏 2 8028 𝜏 945 {\displaystyle{\displaystyle\mathsf{A}_{2}(\tau)=\tfrac{1}{288}\tau^{2}(6160% \tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)}}
\mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)

A[2]*(((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))) = (1)/(288)*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)*(6160*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(4)+ 18480*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(3)+ 19404*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))^(2)+ 8028*((1)/(2)*((t)/(sqrt((t)^(2)- 1))- 1))+ 945)
Subscript[A, 2]*((Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))) == Divide[1,288]*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)*(6160*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(4)+ 18480*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(3)+ 19404*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))^(2)+ 8028*(Divide[1,2]*(Divide[t,Sqrt[(t)^(2)- 1]]- 1))+ 945)
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex22 A s ( ζ ) = ζ - 3 s m = 0 2 s β m ( ϕ ( ζ ) ) 6 ( 2 s - m ) u 2 s - m ( t ) subscript 𝐴 𝑠 𝜁 superscript 𝜁 3 𝑠 superscript subscript 𝑚 0 2 𝑠 subscript 𝛽 𝑚 superscript italic-ϕ 𝜁 6 2 𝑠 𝑚 subscript 𝑢 2 𝑠 𝑚 𝑡 {\displaystyle{\displaystyle A_{s}(\zeta)=\zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(% \phi(\zeta))^{6(2s-m)}u_{2s-m}(t)}}
A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)

A[s](zeta) = (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m))* u[2*s - m](t), m = 0..2*s)
Subscript[A, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m))* Subscript[u, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex23 ζ 2 B s ( ζ ) = - ζ - 3 s m = 0 2 s + 1 α m ( ϕ ( ζ ) ) 6 ( 2 s - m + 1 ) u 2 s - m + 1 ( t ) superscript 𝜁 2 subscript 𝐵 𝑠 𝜁 superscript 𝜁 3 𝑠 superscript subscript 𝑚 0 2 𝑠 1 subscript 𝛼 𝑚 superscript italic-ϕ 𝜁 6 2 𝑠 𝑚 1 subscript 𝑢 2 𝑠 𝑚 1 𝑡 {\displaystyle{\displaystyle\zeta^{2}B_{s}(\zeta)=-\zeta^{-3s}\sum_{m=0}^{2s+1% }\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)}}
\zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)

(zeta)^(2)* B[s](zeta) = - (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m + 1))* u[2*s - m + 1](t), m = 0..2*s + 1)
\[Zeta]^(2)* Subscript[B, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m + 1))* Subscript[u, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex28 ζ C s ( ζ ) = - ζ - 3 s m = 0 2 s + 1 β m ( ϕ ( ζ ) ) 6 ( 2 s - m + 1 ) v 2 s - m + 1 ( t ) 𝜁 subscript 𝐶 𝑠 𝜁 superscript 𝜁 3 𝑠 superscript subscript 𝑚 0 2 𝑠 1 subscript 𝛽 𝑚 superscript italic-ϕ 𝜁 6 2 𝑠 𝑚 1 subscript 𝑣 2 𝑠 𝑚 1 𝑡 {\displaystyle{\displaystyle\zeta C_{s}(\zeta)=-\zeta^{-3s}\sum_{m=0}^{2s+1}% \beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)}}
\zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)

zeta*C[s](zeta) = - (zeta)^(- 3*s)* sum((-(6*m + 1)/(6*m - 1)*alpha[m])*((((zeta)/((t)^(2)- 1))^((1)/(4))))^(6*(2*s - m + 1))* v[2*s - m + 1](t), m = 0..2*s + 1)
\[Zeta]*Subscript[C, s][\[Zeta]] == - \[Zeta]^(- 3*s)* Sum[(-Divide[6*m + 1,6*m - 1]*Subscript[\[Alpha], m])*(((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4])))^(6*(2*s - m + 1))* Subscript[v, 2*s - m + 1][t], {m, 0, 2*s + 1}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex29 D s ( ζ ) = ζ - 3 s m = 0 2 s α m ( ϕ ( ζ ) ) 6 ( 2 s - m ) v 2 s - m ( t ) subscript 𝐷 𝑠 𝜁 superscript 𝜁 3 𝑠 superscript subscript 𝑚 0 2 𝑠 subscript 𝛼 𝑚 superscript italic-ϕ 𝜁 6 2 𝑠 𝑚 subscript 𝑣 2 𝑠 𝑚 𝑡 {\displaystyle{\displaystyle D_{s}(\zeta)=\zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}% (\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)}}
D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)

D[s](zeta) = (zeta)^(- 3*s)* sum((alpha[m]((((zeta)/((t)^(2)- 1))^((1)/(4)))))^(6*(2*s - m))* v[2*s - m](t), m = 0..2*s)
Subscript[D, s][\[Zeta]] == \[Zeta]^(- 3*s)* Sum[(Subscript[\[Alpha], m][((Divide[\[Zeta],(t)^(2)- 1])^(Divide[1,4]))])^(6*(2*s - m))* Subscript[v, 2*s - m][t], {m, 0, 2*s}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -