13.11: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/13.11.E1 13.11.E1] | | | [https://dlmf.nist.gov/13.11.E1 13.11.E1] || <math qid="Q4476">\KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z}</syntaxhighlight> || <math>\realpart@@{(a-\tfrac{1}{2})} > 0, \realpart@@{((a-\frac{1}{2}+s)+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KummerM(a, b, z) = GAMMA(a -(1)/(2))*exp((1)/(2)*z)*((1)/(4)*z)^((1)/(2)- a)* sum((pochhammer(2*a - 1, s)*pochhammer(2*a - b, s))/(pochhammer(b, s)*factorial(s))*(a -(1)/(2)+ s)* BesselI(a -(1)/(2)+ s, (1)/(2)*z), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric1F1[a, b, z] == Gamma[a -Divide[1,2]]*Exp[Divide[1,2]*z]*(Divide[1,4]*z)^(Divide[1,2]- a)* Sum[Divide[Pochhammer[2*a - 1, s]*Pochhammer[2*a - b, s],Pochhammer[b, s]*(s)!]*(a -Divide[1,2]+ s)* BesselI[a -Divide[1,2]+ s, Divide[1,2]*z], {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || <div class="toccolours mw-collapsible mw-collapsed">Failed [84 / 84]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-3.202632216430895, 12.150063432924489], Times[Complex[-5.9381784278055925, 1.66646925063829], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]] | ||
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[3.448639860241066, -0.8097281072366314], Times[Complex[0.28180823919021325, 3.102430445912792], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]] | Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[3.448639860241066, -0.8097281072366314], Times[Complex[0.28180823919021325, 3.102430445912792], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]] | ||
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:33, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
13.11.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z}}
\KummerconfhyperM@{a}{b}{z} = \EulerGamma@{a-\tfrac{1}{2}}e^{\frac{1}{2}z}\left(\tfrac{1}{4}z\right)^{\frac{1}{2}-a}\*\sum_{s=0}^{\infty}\frac{\Pochhammersym{2a-1}{s}\Pochhammersym{2a-b}{s}}{\Pochhammersym{b}{s}s!}\*\left(a-\tfrac{1}{2}+s\right)\*\modBesselI{a-\frac{1}{2}+s}@{\tfrac{1}{2}z} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(a-\tfrac{1}{2})} > 0, \realpart@@{((a-\frac{1}{2}+s)+k+1)} > 0} | KummerM(a, b, z) = GAMMA(a -(1)/(2))*exp((1)/(2)*z)*((1)/(4)*z)^((1)/(2)- a)* sum((pochhammer(2*a - 1, s)*pochhammer(2*a - b, s))/(pochhammer(b, s)*factorial(s))*(a -(1)/(2)+ s)* BesselI(a -(1)/(2)+ s, (1)/(2)*z), s = 0..infinity)
|
Hypergeometric1F1[a, b, z] == Gamma[a -Divide[1,2]]*Exp[Divide[1,2]*z]*(Divide[1,4]*z)^(Divide[1,2]- a)* Sum[Divide[Pochhammer[2*a - 1, s]*Pochhammer[2*a - b, s],Pochhammer[b, s]*(s)!]*(a -Divide[1,2]+ s)* BesselI[a -Divide[1,2]+ s, Divide[1,2]*z], {s, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Manual Skip! | Failed [84 / 84]
Result: Plus[Complex[-3.202632216430895, 12.150063432924489], Times[Complex[-5.9381784278055925, 1.66646925063829], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[3.448639860241066, -0.8097281072366314], Times[Complex[0.28180823919021325, 3.102430445912792], NSum[Times[Plus[1.0, s], BesselI[Plus[1.0, s], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Power[Factorial[s], -1], Power[Pochhammer[-1.5, s], -1], Pochhammer[2.0, s], Pochhammer[4.5, s]]
Test Values: {s, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[a, 1.5], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |