13.31: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
 Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				 Admin moved page Main Page to Verifying DLMF with Maple and Mathematica  | 
				||
| Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica  | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica  | ||
|-    | |-    | ||
| [https://dlmf.nist.gov/13.31.E3 13.31.E3] |  | | [https://dlmf.nist.gov/13.31.E3 13.31.E3] || <math qid="Q4678">z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(z)^(a)* KummerU(a, 1 + a - b, z) = limit((sum((pochhammer(- n, s)*pochhammer(n + 1, s)*pochhammer(a, s)*pochhammer(b, s))/(pochhammer(a + 1, s)*pochhammer(b + 1, s)*(factorial(n))^(2))* hypergeom([- n + s , n + 1 + s , 1], [1 + s , a + 1 + s , b + 1 + s], - z), s = 0..n))/(hypergeom([- n , n + 1], [a + 1 , b + 1], - z)), n = infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(z)^(a)* HypergeometricU[a, 1 + a - b, z] == Limit[Divide[Sum[Divide[Pochhammer[- n, s]*Pochhammer[n + 1, s]*Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[a + 1, s]*Pochhammer[b + 1, s]*((n)!)^(2)]* HypergeometricPFQ[{- n + s , n + 1 + s , 1}, {1 + s , a + 1 + s , b + 1 + s}, - z], {s, 0, n}, GenerateConditions->None],HypergeometricPFQ[{- n , n + 1}, {a + 1 , b + 1}, - z]], n -> Infinity, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out  | ||
|}  | |}  | ||
</div>  | </div>  | ||
Latest revision as of 11:35, 28 June 2021
| DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple  | 
Symbolic Mathematica  | 
Numeric Maple  | 
Numeric Mathematica  | 
|---|---|---|---|---|---|---|---|---|
| 13.31.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)}}
z^{a}\KummerconfhyperU@{a}{1+a-b}{z} = \lim_{n\to\infty}\frac{A_{n}(z)}{B_{n}(z)} | 
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (z)^(a)* KummerU(a, 1 + a - b, z) = limit((sum((pochhammer(- n, s)*pochhammer(n + 1, s)*pochhammer(a, s)*pochhammer(b, s))/(pochhammer(a + 1, s)*pochhammer(b + 1, s)*(factorial(n))^(2))* hypergeom([- n + s , n + 1 + s , 1], [1 + s , a + 1 + s , b + 1 + s], - z), s = 0..n))/(hypergeom([- n , n + 1], [a + 1 , b + 1], - z)), n = infinity)
 | 
(z)^(a)* HypergeometricU[a, 1 + a - b, z] == Limit[Divide[Sum[Divide[Pochhammer[- n, s]*Pochhammer[n + 1, s]*Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[a + 1, s]*Pochhammer[b + 1, s]*((n)!)^(2)]* HypergeometricPFQ[{- n + s , n + 1 + s , 1}, {1 + s , a + 1 + s , b + 1 + s}, - z], {s, 0, n}, GenerateConditions->None],HypergeometricPFQ[{- n , n + 1}, {a + 1 , b + 1}, - z]], n -> Infinity, GenerateConditions->None]
 | 
Failure | Aborted | Skipped - Because timed out | Skipped - Because timed out |