15.15: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/15.15.E1 15.15.E1] || [[Item:Q5177|<math>\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/15.15.E1 15.15.E1] || <math qid="Q5177">\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Skipped - Because timed out || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 11:41, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.15.E1 𝐅 ( a , b c ; 1 z ) = ( 1 - z 0 z ) - a s = 0 ( a ) s s ! 𝐅 ( - s , b c ; 1 z 0 ) ( 1 - z z 0 ) - s scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 1 𝑧 superscript 1 subscript 𝑧 0 𝑧 𝑎 superscript subscript 𝑠 0 subscript 𝑎 𝑠 𝑠 scaled-hypergeometric-bold-F 𝑠 𝑏 𝑐 1 subscript 𝑧 0 superscript 1 𝑧 subscript 𝑧 0 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};\frac{1}{z}\right)=% \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*% \mathbf{F}\left({-s,b\atop c};\frac{1}{z_{0}}\right)\left(1-\frac{z}{z_{0}}% \right)^{-s}}}
\hyperOlverF@@{a}{b}{c}{\frac{1}{z}} = \left(1-\frac{z_{0}}{z}\right)^{-a}\sum_{s=0}^{\infty}\frac{(a)_{s}}{s!}\*\hyperOlverF@@{-s}{b}{c}{\frac{1}{z_{0}}}\left(1-\frac{z}{z_{0}}\right)^{-s}

hypergeom([a, b], [c], (1)/(z))/GAMMA(c) = (1 -(z[0])/(z))^(- a)* sum((a[s])/(factorial(s))* hypergeom([- s, b], [c], (1)/(z[0]))/GAMMA(c)*(1 -(z)/(z[0]))^(- s), s = 0..infinity)
Hypergeometric2F1Regularized[a, b, c, Divide[1,z]] == (1 -Divide[Subscript[z, 0],z])^(- a)* Sum[Divide[Subscript[a, s],(s)!]* Hypergeometric2F1Regularized[- s, b, c, Divide[1,Subscript[z, 0]]]*(1 -Divide[z,Subscript[z, 0]])^(- s), {s, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out Skipped - Because timed out