18.2: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/18.2.E1 18.2.E1] || [[Item:Q5490|<math>\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <syntaxhighlight lang=mathematica>int(p[n](x)* p[m](x)* w(x), x = a..b) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Subscript[p, n][x]* Subscript[p, m][x]* w[x], {x, a, b}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 300] || Successful [Tested: 300]
| [https://dlmf.nist.gov/18.2.E1 18.2.E1] || <math qid="Q5490">\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <syntaxhighlight lang=mathematica>int(p[n](x)* p[m](x)* w(x), x = a..b) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Integrate[Subscript[p, n][x]* Subscript[p, m][x]* w[x], {x, a, b}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Failure || Successful [Tested: 300] || Successful [Tested: 300]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/18.2.E2 18.2.E2] || [[Item:Q5491|<math>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(p[n](x)* p[m](x)* w[x], x in X) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/18.2.E2 18.2.E2] || <math qid="Q5491">\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</syntaxhighlight> || <math>n \neq m</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(p[n](x)* p[m](x)* w[x], x in X) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/18.2.E3 18.2.E3] || [[Item:Q5492|<math>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(p[n](x)* p[m](x)* w[x], x in X) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/18.2.E3 18.2.E3] || <math qid="Q5492">\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum(p[n](x)* p[m](x)* w[x], x in X) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/18.2.E4 18.2.E4] || [[Item:Q5493|<math>\sum_{x\in X}x^{2n}w_{x} < \infty</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}x^{2n}w_{x} < \infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((x)^(2*n)* w[x](<)*infinity, x in X)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(x)^(2*n)* Subscript[w, x][<]*Infinity, {x, X}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/18.2.E4 18.2.E4] || <math qid="Q5493">\sum_{x\in X}x^{2n}w_{x} < \infty</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\sum_{x\in X}x^{2n}w_{x} < \infty</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">sum((x)^(2*n)* w[x](<)*infinity, x in X)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Sum[(x)^(2*n)* Subscript[w, x][<]*Infinity, {x, X}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/18.2.E8 18.2.E8] || [[Item:Q5497|<math>p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)</syntaxhighlight> || <math>n \geq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[n + 1](x) = (((k[n + 1])/(k[n]))*x + B[n])*p[n](x)- C[n]*p[n - 1](x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, n + 1][x] == ((Divide[Subscript[k, n + 1],Subscript[k, n]])*x + Subscript[B, n])*Subscript[p, n][x]- Subscript[C, n]*Subscript[p, n - 1][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/18.2.E8 18.2.E8] || <math qid="Q5497">p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)</syntaxhighlight> || <math>n \geq 0</math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">p[n + 1](x) = (((k[n + 1])/(k[n]))*x + B[n])*p[n](x)- C[n]*p[n - 1](x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[p, n + 1][x] == ((Divide[Subscript[k, n + 1],Subscript[k, n]])*x + Subscript[B, n])*Subscript[p, n][x]- Subscript[C, n]*Subscript[p, n - 1][x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|}
|}
</div>
</div>

Latest revision as of 11:44, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
18.2.E1 a b p n ( x ) p m ( x ) w ( x ) d x = 0 superscript subscript 𝑎 𝑏 subscript 𝑝 𝑛 𝑥 subscript 𝑝 𝑚 𝑥 𝑤 𝑥 𝑥 0 {\displaystyle{\displaystyle\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\mathrm{d}x=0}}
\int_{a}^{b}p_{n}(x)p_{m}(x)w(x)\diff{x} = 0
n m 𝑛 𝑚 {\displaystyle{\displaystyle n\neq m}}
int(p[n](x)* p[m](x)* w(x), x = a..b) = 0
Integrate[Subscript[p, n][x]* Subscript[p, m][x]* w[x], {x, a, b}, GenerateConditions->None] == 0
Failure Failure Successful [Tested: 300] Successful [Tested: 300]
18.2.E2 x X p n ( x ) p m ( x ) w x = 0 subscript 𝑥 𝑋 subscript 𝑝 𝑛 𝑥 subscript 𝑝 𝑚 𝑥 subscript 𝑤 𝑥 0 {\displaystyle{\displaystyle\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x}=0}}
\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0
n m 𝑛 𝑚 {\displaystyle{\displaystyle n\neq m}}
sum(p[n](x)* p[m](x)* w[x], x in X) = 0
Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
18.2.E3 x X p n ( x ) p m ( x ) w x = 0 subscript 𝑥 𝑋 subscript 𝑝 𝑛 𝑥 subscript 𝑝 𝑚 𝑥 subscript 𝑤 𝑥 0 {\displaystyle{\displaystyle\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x}=0}}
\sum_{x\in X}p_{n}(x)p_{m}(x)w_{x} = 0

sum(p[n](x)* p[m](x)* w[x], x in X) = 0
Sum[Subscript[p, n][x]* Subscript[p, m][x]* Subscript[w, x], {x, X}, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
18.2.E4 x X x 2 n w x < subscript 𝑥 𝑋 superscript 𝑥 2 𝑛 subscript 𝑤 𝑥 {\displaystyle{\displaystyle\sum_{x\in X}x^{2n}w_{x}<\infty}}
\sum_{x\in X}x^{2n}w_{x} < \infty

sum((x)^(2*n)* w[x](<)*infinity, x in X)
Sum[(x)^(2*n)* Subscript[w, x][<]*Infinity, {x, X}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
18.2.E8 p n + 1 ( x ) = ( A n x + B n ) p n ( x ) - C n p n - 1 ( x ) subscript 𝑝 𝑛 1 𝑥 subscript 𝐴 𝑛 𝑥 subscript 𝐵 𝑛 subscript 𝑝 𝑛 𝑥 subscript 𝐶 𝑛 subscript 𝑝 𝑛 1 𝑥 {\displaystyle{\displaystyle p_{n+1}(x)=(A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)}}
p_{n+1}(x) = (A_{n}x+B_{n})p_{n}(x)-C_{n}p_{n-1}(x)
n 0 𝑛 0 {\displaystyle{\displaystyle n\geq 0}}
p[n + 1](x) = (((k[n + 1])/(k[n]))*x + B[n])*p[n](x)- C[n]*p[n - 1](x)
Subscript[p, n + 1][x] == ((Divide[Subscript[k, n + 1],Subscript[k, n]])*x + Subscript[B, n])*Subscript[p, n][x]- Subscript[C, n]*Subscript[p, n - 1][x]
Skipped - no semantic math Skipped - no semantic math - -