19.7: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/19.7.E1 19.7.E1] || [[Item:Q6181|<math>\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7.E1 19.7.E1] || <math qid="Q6181">\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex1 19.7#Ex1] || [[Item:Q6182|<math>\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex1 19.7#Ex1] || <math qid="Q6182">\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex2 19.7#Ex2] || [[Item:Q6183|<math>\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/19.7#Ex2 19.7#Ex2] || <math qid="Q6183">\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex3 19.7#Ex3] || [[Item:Q6184|<math>\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
| [https://dlmf.nist.gov/19.7#Ex3 19.7#Ex3] || <math qid="Q6184">\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6e-9+.4691535424*I
Test Values: {k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .6e-9+.4691535424*I
Test Values: {k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Line 29: Line 29:
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex4 19.7#Ex4] || [[Item:Q6185|<math>\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/19.7#Ex4 19.7#Ex4] || <math qid="Q6185">\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex5 19.7#Ex5] || [[Item:Q6186|<math>\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex5 19.7#Ex5] || <math qid="Q6186">\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex5 19.7#Ex5] || [[Item:Q6186|<math>\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex5 19.7#Ex5] || <math qid="Q6186">\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex6 19.7#Ex6] || [[Item:Q6187|<math>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex6 19.7#Ex6] || <math qid="Q6187">\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex6 19.7#Ex6] || [[Item:Q6187|<math>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex6 19.7#Ex6] || <math qid="Q6187">\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
Test Values: {Rule[k, 1]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex7 19.7#Ex7] || [[Item:Q6188|<math>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/19.7#Ex7 19.7#Ex7] || <math qid="Q6188">\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex7 19.7#Ex7] || [[Item:Q6188|<math>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/19.7#Ex7 19.7#Ex7] || <math qid="Q6188">\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex8 19.7#Ex8] || [[Item:Q6189|<math>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex8 19.7#Ex8] || <math qid="Q6189">\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex8 19.7#Ex8] || [[Item:Q6189|<math>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/19.7#Ex8 19.7#Ex8] || <math qid="Q6189">\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex19 19.7#Ex19] || [[Item:Q6200|<math>\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1428695990-.263545696e-1*I
| [https://dlmf.nist.gov/19.7#Ex19 19.7#Ex19] || <math qid="Q6200">\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .1428695990-.263545696e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.020142137049999537, -0.0010462389457662757]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.020142137049999537, -0.0010462389457662757]
Line 67: Line 67:
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex20 19.7#Ex20] || [[Item:Q6201|<math>\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.9970133474-.1125517221*I
| [https://dlmf.nist.gov/19.7#Ex20 19.7#Ex20] || <math qid="Q6201">\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.9970133474-.1125517221*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3893501368763376, 0.20738614458301174]
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.3893501368763376, 0.20738614458301174]
Line 73: Line 73:
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/19.7#Ex21 19.7#Ex21] || [[Item:Q6202|<math>\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [292 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .926834363e-2-.484444094e-1*I
| [https://dlmf.nist.gov/19.7#Ex21 19.7#Ex21] || <math qid="Q6202">\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [292 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .926834363e-2-.484444094e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [298 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.013291772923717082, -0.006719909387202905]
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [298 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.013291772923717082, -0.006719909387202905]

Latest revision as of 11:49, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
19.7.E1 E ( k ) K ( k ) + E ( k ) K ( k ) - K ( k ) K ( k ) = 1 2 π complete-elliptic-integral-second-kind-E 𝑘 complementary-complete-elliptic-integral-first-kind-K 𝑘 complementary-complete-elliptic-integral-second-kind-E 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complete-elliptic-integral-first-kind-K 𝑘 complementary-complete-elliptic-integral-first-kind-K 𝑘 1 2 𝜋 {\displaystyle{\displaystyle E\left(k\right){K^{\prime}}\left(k\right)+{E^{% \prime}}\left(k\right)K\left(k\right)-K\left(k\right){K^{\prime}}\left(k\right% )=\tfrac{1}{2}\pi}}
\compellintEk@{k}\ccompellintKk@{k}+\ccompellintEk@{k}\compellintKk@{k}-\compellintKk@{k}\ccompellintKk@{k} = \tfrac{1}{2}\pi

EllipticE(k)*EllipticCK(k)+ EllipticCE(k)*EllipticK(k)- EllipticK(k)*EllipticCK(k) = (1)/(2)*Pi
EllipticE[(k)^2]*EllipticK[1-(k)^2]+ EllipticE[1-(k)^2]*EllipticK[(k)^2]- EllipticK[(k)^2]*EllipticK[1-(k)^2] == Divide[1,2]*Pi
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex1 K ( i k / k ) = k K ( k ) complete-elliptic-integral-first-kind-K 𝑖 𝑘 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(ik/k^{\prime}\right)=k^{\prime}K\left(k% \right)}}
\compellintKk@{ik/k^{\prime}} = k^{\prime}\compellintKk@{k}

EllipticK(I*k/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*EllipticK(k)
EllipticK[(I*k/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*EllipticK[(k)^2]
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, -2.9198052634126777]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex2 K ( - i k / k ) = k K ( k ) complete-elliptic-integral-first-kind-K 𝑖 superscript 𝑘 𝑘 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(-ik^{\prime}/k\right)=kK\left(k^{\prime}% \right)}}
\compellintKk@{-ik^{\prime}/k} = k\compellintKk@{k^{\prime}}

EllipticK(- I*sqrt(1 - (k)^(2))/k) = k*EllipticK(sqrt(1 - (k)^(2)))
EllipticK[(- I*Sqrt[1 - (k)^(2)]/k)^2] == k*EllipticK[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex3 E ( i k / k ) = ( 1 / k ) E ( k ) complete-elliptic-integral-second-kind-E 𝑖 𝑘 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E 𝑘 {\displaystyle{\displaystyle E\left(ik/k^{\prime}\right)=(1/k^{\prime})E\left(% k\right)}}
\compellintEk@{ik/k^{\prime}} = (1/k^{\prime})\compellintEk@{k}

EllipticE(I*k/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*EllipticE(k)
EllipticE[(I*k/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*EllipticE[(k)^2]
Failure Failure
Failed [3 / 3]
Result: Float(infinity)+Float(infinity)*I
Test Values: {k = 1}

Result: .6e-9+.4691535424*I
Test Values: {k = 2}

... skip entries to safe data
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-5.551115123125783*^-16, 0.46915354293820644]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex4 E ( - i k / k ) = ( 1 / k ) E ( k ) complete-elliptic-integral-second-kind-E 𝑖 superscript 𝑘 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 {\displaystyle{\displaystyle E\left(-ik^{\prime}/k\right)=(1/k)E\left(k^{% \prime}\right)}}
\compellintEk@{-ik^{\prime}/k} = (1/k)\compellintEk@{k^{\prime}}

EllipticE(- I*sqrt(1 - (k)^(2))/k) = (1/k)*EllipticE(sqrt(1 - (k)^(2)))
EllipticE[(- I*Sqrt[1 - (k)^(2)]/k)^2] == (1/k)*EllipticE[(Sqrt[1 - (k)^(2)])^2]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
19.7#Ex5 K ( 1 / k ) = k ( K ( k ) - i K ( k ) ) complete-elliptic-integral-first-kind-K 1 𝑘 𝑘 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(1/k\right)=k(K\left(k\right)-\mathrm{i}K% \left(k^{\prime}\right))}}
\compellintKk@{1/k} = k(\compellintKk@{k}-\iunit\compellintKk@{k^{\prime}})

EllipticK(1/k) = k*(EllipticK(k)- I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]- I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-2.220446049250313*^-16, 4.313031294999287]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex5 K ( 1 / k ) = k ( K ( k ) + i K ( k ) ) complete-elliptic-integral-first-kind-K 1 𝑘 𝑘 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle K\left(1/k\right)=k(K\left(k\right)+\mathrm{i}K% \left(k^{\prime}\right))}}
\compellintKk@{1/k} = k(\compellintKk@{k}+\iunit\compellintKk@{k^{\prime}})

EllipticK(1/k) = k*(EllipticK(k)+ I*EllipticK(sqrt(1 - (k)^(2))))
EllipticK[(1/k)^2] == k*(EllipticK[(k)^2]+ I*EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex6 K ( 1 / k ) = k ( K ( k ) + i K ( k ) ) complete-elliptic-integral-first-kind-K 1 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(1/k^{\prime}\right)=k^{\prime}(K\left(k^{% \prime}\right)+\mathrm{i}K\left(k\right))}}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}+\iunit\compellintKk@{k})

EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))+ I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[2.9198052634126785, -3.7351946687866775]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex6 K ( 1 / k ) = k ( K ( k ) - i K ( k ) ) complete-elliptic-integral-first-kind-K 1 superscript 𝑘 superscript 𝑘 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(1/k^{\prime}\right)=k^{\prime}(K\left(k^{% \prime}\right)-\mathrm{i}K\left(k\right))}}
\compellintKk@{1/k^{\prime}} = k^{\prime}(\compellintKk@{k^{\prime}}-\iunit\compellintKk@{k})

EllipticK(1/(sqrt(1 - (k)^(2)))) = sqrt(1 - (k)^(2))*(EllipticK(sqrt(1 - (k)^(2)))- I*EllipticK(k))
EllipticK[(1/(Sqrt[1 - (k)^(2)]))^2] == Sqrt[1 - (k)^(2)]*(EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*EllipticK[(k)^2])
Failure Failure Error
Failed [1 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

19.7#Ex7 E ( 1 / k ) = ( 1 / k ) ( E ( k ) + i E ( k ) - k 2 K ( k ) - i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E superscript 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle E\left(1/k\right)=(1/k)\left(E\left(k\right)+% \mathrm{i}E\left(k^{\prime}\right)-{k^{\prime}}^{2}K\left(k\right)-\mathrm{i}k% ^{2}K\left(k^{\prime}\right)\right)}}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}+\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}-\iunit k^{2}\compellintKk@{k^{\prime}}\right)

EllipticE(1/k) = (1/k)*(EllipticE(k)+ I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)- I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]+ I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]- I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -1.8829831432620088]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex7 E ( 1 / k ) = ( 1 / k ) ( E ( k ) - i E ( k ) - k 2 K ( k ) + i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 𝑘 1 𝑘 complete-elliptic-integral-second-kind-E 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E superscript 𝑘 superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 imaginary-unit superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 {\displaystyle{\displaystyle E\left(1/k\right)=(1/k)\left(E\left(k\right)-% \mathrm{i}E\left(k^{\prime}\right)-{k^{\prime}}^{2}K\left(k\right)+\mathrm{i}k% ^{2}K\left(k^{\prime}\right)\right)}}
\compellintEk@{1/k} = (1/k)\left(\compellintEk@{k}-\iunit\compellintEk@{k^{\prime}}-{k^{\prime}}^{2}\compellintKk@{k}+\iunit k^{2}\compellintKk@{k^{\prime}}\right)

EllipticE(1/k) = (1/k)*(EllipticE(k)- I*EllipticE(sqrt(1 - (k)^(2)))-1 - (k)^(2)*EllipticK(k)+ I*(k)^(2)* EllipticK(sqrt(1 - (k)^(2))))
EllipticE[(1/k)^2] == (1/k)*(EllipticE[(k)^2]- I*EllipticE[(Sqrt[1 - (k)^(2)])^2]-1 - (k)^(2)*EllipticK[(k)^2]+ I*(k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2])
Failure Failure Error
Failed [3 / 3]
Result: DirectedInfinity[]
Test Values: {Rule[k, 1]}

Result: Complex[3.4500631209220436, -3.773902383124376]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 E ( 1 / k ) = ( 1 / k ) ( E ( k ) - i E ( k ) - k 2 K ( k ) + i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle E\left(1/k^{\prime}\right)=(1/k^{\prime})\left(E% \left(k^{\prime}\right)-\mathrm{i}E\left(k\right)-k^{2}K\left(k^{\prime}\right% )+\mathrm{i}{k^{\prime}}^{2}K\left(k\right)\right)}}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}-\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}+\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)

EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))- I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))+ I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]- I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]+ I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-1.1384238737361991, -2.262384972182541]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex8 E ( 1 / k ) = ( 1 / k ) ( E ( k ) + i E ( k ) - k 2 K ( k ) - i k 2 K ( k ) ) complete-elliptic-integral-second-kind-E 1 superscript 𝑘 1 superscript 𝑘 complete-elliptic-integral-second-kind-E superscript 𝑘 imaginary-unit complete-elliptic-integral-second-kind-E 𝑘 superscript 𝑘 2 complete-elliptic-integral-first-kind-K superscript 𝑘 imaginary-unit superscript superscript 𝑘 2 complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle E\left(1/k^{\prime}\right)=(1/k^{\prime})\left(E% \left(k^{\prime}\right)+\mathrm{i}E\left(k\right)-k^{2}K\left(k^{\prime}\right% )-\mathrm{i}{k^{\prime}}^{2}K\left(k\right)\right)}}
\compellintEk@{1/k^{\prime}} = (1/k^{\prime})\left(\compellintEk@{k^{\prime}}+\iunit\compellintEk@{k}-k^{2}\compellintKk@{k^{\prime}}-\iunit{k^{\prime}}^{2}\compellintKk@{k}\right)

EllipticE(1/(sqrt(1 - (k)^(2)))) = (1/(sqrt(1 - (k)^(2))))*(EllipticE(sqrt(1 - (k)^(2)))+ I*EllipticE(k)- (k)^(2)* EllipticK(sqrt(1 - (k)^(2)))- I*1 - (k)^(2)*EllipticK(k))
EllipticE[(1/(Sqrt[1 - (k)^(2)]))^2] == (1/(Sqrt[1 - (k)^(2)]))*(EllipticE[(Sqrt[1 - (k)^(2)])^2]+ I*EllipticE[(k)^2]- (k)^(2)* EllipticK[(Sqrt[1 - (k)^(2)])^2]- I*1 - (k)^(2)*EllipticK[(k)^2])
Failure Failure Error
Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}

Result: Complex[-0.45287687829515355, -3.814134176668458]
Test Values: {Rule[k, 2]}

... skip entries to safe data
19.7#Ex19 F ( i ϕ , k ) = i F ( ψ , k ) elliptic-integral-first-kind-F 𝑖 italic-ϕ 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 {\displaystyle{\displaystyle F\left(i\phi,k\right)=iF\left(\psi,k^{\prime}% \right)}}
\incellintFk@{i\phi}{k} = i\incellintFk@{\psi}{k^{\prime}}

EllipticF(sin(I*phi), k) = I*EllipticF(sin(psi), sqrt(1 - (k)^(2)))
EllipticF[I*\[Phi], (k)^2] == I*EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]
Failure Failure
Failed [300 / 300]
Result: .1428695990-.263545696e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: .749290340e-1-.334629029e-1*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.020142137049999537, -0.0010462389457662757]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.015860617706546204, -0.003938067237051424]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex20 E ( i ϕ , k ) = i ( F ( ψ , k ) - E ( ψ , k ) + ( tan ψ ) 1 - k 2 sin 2 ψ ) elliptic-integral-second-kind-E 𝑖 italic-ϕ 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 elliptic-integral-second-kind-E 𝜓 superscript 𝑘 𝜓 1 superscript superscript 𝑘 2 2 𝜓 {\displaystyle{\displaystyle E\left(i\phi,k\right)=i\left(F\left(\psi,k^{% \prime}\right)-E\left(\psi,k^{\prime}\right)+(\tan\psi)\sqrt{1-{k^{\prime}}^{2% }{\sin^{2}}\psi}\right)}}
\incellintEk@{i\phi}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\incellintEk@{\psi}{k^{\prime}}+(\tan@@{\psi})\sqrt{1-{k^{\prime}}^{2}\sin^{2}@@{\psi}}\right)

EllipticE(sin(I*phi), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- EllipticE(sin(psi), sqrt(1 - (k)^(2)))+(tan(psi))*sqrt(1 -1 - (k)^(2)*(sin(psi))^(2)))
EllipticE[I*\[Phi], (k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- EllipticE[\[Psi], (Sqrt[1 - (k)^(2)])^2]+(Tan[\[Psi]])*Sqrt[1 -1 - (k)^(2)*(Sin[\[Psi]])^(2)])
Failure Failure
Failed [300 / 300]
Result: -.9970133474-.1125517221*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -2.257467281-.7782721018*I
Test Values: {phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-0.3893501368763376, 0.20738614458301174]
Test Values: {Rule[k, 1], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.6710974690872284, 0.0060773305020283]
Test Values: {Rule[k, 2], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
19.7#Ex21 Π ( i ϕ , α 2 , k ) = i ( F ( ψ , k ) - α 2 Π ( ψ , 1 - α 2 , k ) ) / ( 1 - α 2 ) elliptic-integral-third-kind-Pi 𝑖 italic-ϕ superscript 𝛼 2 𝑘 𝑖 elliptic-integral-first-kind-F 𝜓 superscript 𝑘 superscript 𝛼 2 elliptic-integral-third-kind-Pi 𝜓 1 superscript 𝛼 2 superscript 𝑘 1 superscript 𝛼 2 {\displaystyle{\displaystyle\Pi\left(i\phi,\alpha^{2},k\right)=i\left(F\left(% \psi,k^{\prime}\right)-\alpha^{2}\Pi\left(\psi,1-\alpha^{2},k^{\prime}\right)% \right)/{(1-\alpha^{2})}}}
\incellintPik@{i\phi}{\alpha^{2}}{k} = i\left(\incellintFk@{\psi}{k^{\prime}}-\alpha^{2}\incellintPik@{\psi}{1-\alpha^{2}}{k^{\prime}}\right)/{(1-\alpha^{2})}

EllipticPi(sin(I*phi), (alpha)^(2), k) = I*(EllipticF(sin(psi), sqrt(1 - (k)^(2)))- (alpha)^(2)* EllipticPi(sin(psi), 1 - (alpha)^(2), sqrt(1 - (k)^(2))))/(1 - (alpha)^(2))
EllipticPi[\[Alpha]^(2), I*\[Phi],(k)^2] == I*(EllipticF[\[Psi], (Sqrt[1 - (k)^(2)])^2]- \[Alpha]^(2)* EllipticPi[1 - \[Alpha]^(2), \[Psi],(Sqrt[1 - (k)^(2)])^2])/(1 - \[Alpha]^(2))
Failure Failure
Failed [292 / 300]
Result: .926834363e-2-.484444094e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.130749569e-2-.277524276e-1*I
Test Values: {alpha = 3/2, phi = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [298 / 300]
Result: Complex[0.013291772923717082, -0.006719909387202905]
Test Values: {Rule[k, 1], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.00953602334602252, -0.007394575555177196]
Test Values: {Rule[k, 2], Rule[α, 1.5], Rule[ϕ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ψ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data