19.21: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E1 19.21.E1] | | | [https://dlmf.nist.gov/19.21.E1 19.21.E1] || <math qid="Q6419">\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-18.895019118218656, -13.266297761785948] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.405668177707024, 11.584123712813607] | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.405668177707024, 11.584123712813607] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E2 19.21.E2] | | | [https://dlmf.nist.gov/19.21.E2 19.21.E2] || <math qid="Q6420">3\CarlsonsymellintRF@{0}{y}{z} = z\CarlsonsymellintRD@{0}{y}{z}+y\CarlsonsymellintRD@{0}{z}{y}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>3\CarlsonsymellintRF@{0}{y}{z} = z\CarlsonsymellintRD@{0}{y}{z}+y\CarlsonsymellintRD@{0}{z}{y}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == (x + y*I)*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.11482200178525792, 3.077769310376559] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.9930498831204495, -3.2293137034341144] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.9930498831204495, -3.2293137034341144] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E3 19.21.E3] | | | [https://dlmf.nist.gov/19.21.E3 19.21.E3] || <math qid="Q6421">6\CarlsonsymellintRG@{0}{y}{z} = yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>6\CarlsonsymellintRG@{0}{y}{z} = yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>6*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)))</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.3418687704988255, 4.458096439149204], Times[Complex[8.07364639949469, -3.344213836475408], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.800571487249528, -2.4291108001544095], Times[Complex[8.07364639949469, 3.344213836475408], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[1.800571487249528, -2.4291108001544095], Times[Complex[8.07364639949469, 3.344213836475408], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E3 19.21.E3] | | | [https://dlmf.nist.gov/19.21.E3 19.21.E3] || <math qid="Q6421">yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) = 3z\CarlsonsymellintRF@{0}{y}{z}+z(y-z)\CarlsonsymellintRD@{0}{y}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) = 3z\CarlsonsymellintRF@{0}{y}{z}+z(y-z)\CarlsonsymellintRD@{0}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))) == 3*(x + y*I)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+(x + y*I)*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-4.444420962886951, -4.788886968242726] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-6.333545379831845, 3.3543957304704977] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-6.333545379831845, 3.3543957304704977] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E4 19.21.E4] | | | [https://dlmf.nist.gov/19.21.E4 19.21.E4] || <math qid="Q6422">\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}-\iunit\CarlsonsymellintRF@{0}{z}{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}-\iunit\CarlsonsymellintRF@{0}{z}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)- I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.197606220-2.012137137*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.024722154-2.538160454*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 1.024722154-2.538160454*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.447882135735306, 1.6422203572966838] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.447882135735306, 1.6422203572966838] | ||
Line 36: | Line 36: | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E4 19.21.E4] | | | [https://dlmf.nist.gov/19.21.E4 19.21.E4] || <math qid="Q6422">\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}+\iunit\CarlsonsymellintRF@{0}{z}{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}+\iunit\CarlsonsymellintRF@{0}{z}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)+ I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: 3.609429842+1.115973839*I | ||
Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.710472508+.381644808*I | Test Values: {z = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 2.710472508+.381644808*I | ||
Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0036174998504115152, -2.054982714938571] | Test Values: {z = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.0036174998504115152, -2.054982714938571] | ||
Line 42: | Line 42: | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E5 19.21.E5] | | | [https://dlmf.nist.gov/19.21.E5 19.21.E5] || <math qid="Q6423">2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}+\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}-\iunit z\CarlsonsymellintRF@{0}{z}{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}+\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}-\iunit z\CarlsonsymellintRF@{0}{z}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+ I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.23313173408598564, -1.9381268036446178] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.6842698833888152, -2.1985132995849304] | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[0.6842698833888152, -2.1985132995849304] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E5 19.21.E5] | | | [https://dlmf.nist.gov/19.21.E5 19.21.E5] || <math qid="Q6423">2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}-\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}+\iunit z\CarlsonsymellintRF@{0}{z}{1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}-\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}+\iunit z\CarlsonsymellintRF@{0}{z}{1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])- I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [7 / 7]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.44709928924442033, 1.6621495887309192] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1273665829731985, 1.9939163092606038] | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.1273665829731985, 1.9939163092606038] | ||
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E6 19.21.E6] | | | [https://dlmf.nist.gov/19.21.E6 19.21.E6] || <math qid="Q6424">(\sqrt{rp}/z)\CarlsonsymellintRJ@{0}{y}{z}{p} = {(r-1)}\CarlsonsymellintRF@{0}{y}{z}\CarlsonsymellintRD@{p}{rz}{z}+\CarlsonsymellintRD@{0}{y}{z}\CarlsonsymellintRF@{p}{rz}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(\sqrt{rp}/z)\CarlsonsymellintRJ@{0}{y}{z}{p} = {(r-1)}\CarlsonsymellintRF@{0}{y}{z}\CarlsonsymellintRD@{p}{rz}{z}+\CarlsonsymellintRD@{0}{y}{z}\CarlsonsymellintRF@{p}{rz}{z}</syntaxhighlight> || <math>r = (y-p)/(y-z), (y-p)/(y-z) > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(Sqrt[r*p]/(x + y*I))*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (r - 1)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]*3*(EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]-EllipticE[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)])/((x + y*I-r*(x + y*I))*(x + y*I-p)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))*EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]/Sqrt[x + y*I-p]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.019107479205769995, -0.26821779662698253] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.626010920193221, 0.604709928225457] | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.626010920193221, 0.604709928225457] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E7 19.21.E7] | | | [https://dlmf.nist.gov/19.21.E7 19.21.E7] || <math qid="Q6425">(x-y)\CarlsonsymellintRD@{y}{z}{x}+(z-y)\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{y/(xz)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(x-y)\CarlsonsymellintRD@{y}{z}{x}+(z-y)\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{y/(xz)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(x - y)*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+((x + y*I)- y)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[y/(x*(x + y*I))]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[2.01816993619941, -7.647648832317454] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9029767059950156, 2.211761239496786] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.9029767059950156, 2.211761239496786] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E8 19.21.E8] | | | [https://dlmf.nist.gov/19.21.E8 19.21.E8] || <math qid="Q6426">\CarlsonsymellintRD@{y}{z}{x}+\CarlsonsymellintRD@{z}{x}{y}+\CarlsonsymellintRD@{x}{y}{z} = 3(xyz)^{-1/2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\CarlsonsymellintRD@{y}{z}{x}+\CarlsonsymellintRD@{z}{x}{y}+\CarlsonsymellintRD@{x}{y}{z} = 3(xyz)^{-1/2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x*y*(x + y*I))^(- 1/2)</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.061772053426947915, 0.22732915812456822] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E9 19.21.E9] | | | [https://dlmf.nist.gov/19.21.E9 19.21.E9] || <math qid="Q6427">x\CarlsonsymellintRD@{y}{z}{x}+y\CarlsonsymellintRD@{z}{x}{y}+z\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>x\CarlsonsymellintRD@{y}{z}{x}+y\CarlsonsymellintRD@{z}{x}{y}+z\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>x*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+(x + y*I)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.3490343350525606, -4.182689157514275] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E10 19.21.E10] | | | [https://dlmf.nist.gov/19.21.E10 19.21.E10] || <math qid="Q6428">2\CarlsonsymellintRG@{x}{y}{z} = z\CarlsonsymellintRF@{x}{y}{z}-\tfrac{1}{3}(x-z)(y-z)\CarlsonsymellintRD@{x}{y}{z}+\sqrt{xy/z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>2\CarlsonsymellintRG@{x}{y}{z} = z\CarlsonsymellintRF@{x}{y}{z}-\tfrac{1}{3}(x-z)(y-z)\CarlsonsymellintRD@{x}{y}{z}+\sqrt{xy/z}</syntaxhighlight> || <math>z \neq 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == (x + y*I)*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Divide[1,3]*(x -(x + y*I))*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))+Sqrt[x*y/(x + y*I)]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [18 / 18]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.045465659795318, -0.2973389532409781], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.0191372830755783, 1.5655011975568338], Times[Complex[1.7320508075688772, 1.732050807568877], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | Test Values: {Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[Complex[-2.0191372830755783, 1.5655011975568338], Times[Complex[1.7320508075688772, 1.732050807568877], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]] | ||
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E12 19.21.E12] | | | [https://dlmf.nist.gov/19.21.E12 19.21.E12] || <math qid="Q6430">(p-x)\CarlsonsymellintRJ@{x}{y}{z}{p}+(q-x)\CarlsonsymellintRJ@{x}{y}{z}{q} = 3\CarlsonsymellintRF@{x}{y}{z}-3\CarlsonellintRC@{\xi}{\eta}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>(p-x)\CarlsonsymellintRJ@{x}{y}{z}{p}+(q-x)\CarlsonsymellintRJ@{x}{y}{z}{q} = 3\CarlsonsymellintRF@{x}{y}{z}-3\CarlsonellintRC@{\xi}{\eta}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>(p - x)*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]+(q - x)*3*(x + y*I-x)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]</syntaxhighlight> || Missing Macro Error || Aborted || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[5.153237655786464, -3.718995107844719] | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[5.153237655786464, -3.718995107844719] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.21#Ex1 19.21#Ex1] | | | [https://dlmf.nist.gov/19.21#Ex1 19.21#Ex1] || <math qid="Q6431">(p-x)(q-x) = (y-x)(z-x)</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(p-x)(q-x) = (y-x)(z-x)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(p - x)*(q - x) = (y - x)*((x + y*I)- x)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(p - x)*(q - x) == (y - x)*((x + y*I)- x)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.21#Ex2 19.21#Ex2] | | | [https://dlmf.nist.gov/19.21#Ex2 19.21#Ex2] || <math qid="Q6432">\xi = yz/x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\xi = yz/x</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">xi = y*z/x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Xi] == y*z/x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.21#Ex3 19.21#Ex3] | | | [https://dlmf.nist.gov/19.21#Ex3 19.21#Ex3] || <math qid="Q6433">\eta = pq/x</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta = pq/x</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta = p*q/x</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Eta] == p*q/x</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/19.21.E14 19.21.E14] | | | [https://dlmf.nist.gov/19.21.E14 19.21.E14] || <math qid="Q6434">\eta-\xi = p+q-y-z</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta-\xi = p+q-y-z</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta - xi = p + q - y -(x + y*I)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Eta]- \[Xi] == p + q - y -(x + y*I)</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/19.21.E15 19.21.E15] | | | [https://dlmf.nist.gov/19.21.E15 19.21.E15] || <math qid="Q6435">p\CarlsonsymellintRJ@{0}{y}{z}{p}+q\CarlsonsymellintRJ@{0}{y}{z}{q} = 3\CarlsonsymellintRF@{0}{y}{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>p\CarlsonsymellintRJ@{0}{y}{z}{p}+q\CarlsonsymellintRJ@{0}{y}{z}{q} = 3\CarlsonsymellintRF@{0}{y}{z}</syntaxhighlight> || <math>pq = yz</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>p*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]+ q*3*(x + y*I-0)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.5878632565330948, -3.2355968294614907] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.320767562800481, 3.5603464097743847] | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.320767562800481, 3.5603464097743847] | ||
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:52, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
19.21.E1 | \CarlsonsymellintRF@{0}{z+1}{z}\CarlsonsymellintRD@{0}{z+1}{1}+\CarlsonsymellintRD@{0}{z+1}{z}\CarlsonsymellintRF@{0}{z+1}{1} = 3\pi/(2z) |
|
Error
|
EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]/Sqrt[z-0]*3*(EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]-EllipticE[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)])/((1-z + 1)*(1-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)]-EllipticE[ArcCos[Sqrt[0/z]],(z-z + 1)/(z-0)])/((z-z + 1)*(z-0)^(1/2))*EllipticF[ArcCos[Sqrt[0/1]],(1-z + 1)/(1-0)]/Sqrt[1-0] == 3*Pi/(2*z)
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Complex[-18.895019118218656, -13.266297761785948]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-2.405668177707024, 11.584123712813607]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21.E2 | 3\CarlsonsymellintRF@{0}{y}{z} = z\CarlsonsymellintRD@{0}{y}{z}+y\CarlsonsymellintRD@{0}{z}{y} |
|
Error
|
3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0] == (x + y*I)*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Complex[-0.11482200178525792, 3.077769310376559]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[0.9930498831204495, -3.2293137034341144]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E3 | 6\CarlsonsymellintRG@{0}{y}{z} = yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) |
|
Error
|
6*Sqrt[x + y*I-0]*(EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+(Cot[ArcCos[Sqrt[0/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]+Cot[ArcCos[Sqrt[0/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/x + y*I]]]^2]) == y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2)))
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Plus[Complex[-2.3418687704988255, 4.458096439149204], Times[Complex[8.07364639949469, -3.344213836475408], Plus[Complex[1.465481142300126, -0.24396122198922798], Times[Complex[0.2643318009908678, -0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Plus[Complex[1.800571487249528, -2.4291108001544095], Times[Complex[8.07364639949469, 3.344213836475408], Plus[Complex[1.0084590214609772, 0.7147093671486319], Times[Complex[0.2643318009908678, 0.8730286325904596], Power[Plus[1.0, Times[Complex[-1.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E3 | yz(\CarlsonsymellintRD@{0}{y}{z}+\CarlsonsymellintRD@{0}{z}{y}) = 3z\CarlsonsymellintRF@{0}{y}{z}+z(y-z)\CarlsonsymellintRD@{0}{y}{z} |
|
Error
|
y*(x + y*I)*(3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)]-EllipticE[ArcCos[Sqrt[0/y]],(y-x + y*I)/(y-0)])/((y-x + y*I)*(y-0)^(1/2))) == 3*(x + y*I)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]+(x + y*I)*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Complex[-4.444420962886951, -4.788886968242726]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[-6.333545379831845, 3.3543957304704977]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E4 | \CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}-\iunit\CarlsonsymellintRF@{0}{z}{1} |
|
0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)- I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
|
Failure | Failure | Failed [7 / 7] Result: 3.197606220-2.012137137*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: 1.024722154-2.538160454*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.447882135735306, 1.6422203572966838]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.9112982419758283, 0.8007121244739206]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21.E4 | \CarlsonsymellintRF@{0}{z-1}{z} = \CarlsonsymellintRF@{0}{1-z}{1}+\iunit\CarlsonsymellintRF@{0}{z}{1} |
|
0.5*int(1/(sqrt(t+0)*sqrt(t+z - 1)*sqrt(t+z)), t = 0..infinity) = 0.5*int(1/(sqrt(t+0)*sqrt(t+1 - z)*sqrt(t+1)), t = 0..infinity)+ I*0.5*int(1/(sqrt(t+0)*sqrt(t+z)*sqrt(t+1)), t = 0..infinity)
|
EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]/Sqrt[z-0] == EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
|
Failure | Failure | Failed [7 / 7] Result: 3.609429842+1.115973839*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: 2.710472508+.381644808*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.0036174998504115152, -2.054982714938571]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[-0.9086726238549093, -2.7316000638683375]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21.E5 | 2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}+\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}-\iunit z\CarlsonsymellintRF@{0}{z}{1} |
|
Error
|
2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+ I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]- I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Complex[0.23313173408598564, -1.9381268036446178]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[0.6842698833888152, -2.1985132995849304]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21.E5 | 2\CarlsonsymellintRG@{0}{z-1}{z} = 2\CarlsonsymellintRG@{0}{1-z}{1}-\iunit 2\CarlsonsymellintRG@{0}{z}{1}+(z-1)\CarlsonsymellintRF@{0}{1-z}{1}+\iunit z\CarlsonsymellintRF@{0}{z}{1} |
|
Error
|
2*Sqrt[z-0]*(EllipticE[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+(Cot[ArcCos[Sqrt[0/z]]])^2*EllipticF[ArcCos[Sqrt[0/z]],(z-z - 1)/(z-0)]+Cot[ArcCos[Sqrt[0/z]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/z]]]^2]) == 2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])- I*2*Sqrt[1-0]*(EllipticE[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+(Cot[ArcCos[Sqrt[0/1]]])^2*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]+Cot[ArcCos[Sqrt[0/1]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[0/1]]]^2])+(z - 1)*EllipticF[ArcCos[Sqrt[0/1]],(1-1 - z)/(1-0)]/Sqrt[1-0]+ I*z*EllipticF[ArcCos[Sqrt[0/1]],(1-z)/(1-0)]/Sqrt[1-0]
|
Missing Macro Error | Failure | - | Failed [7 / 7]
Result: Complex[0.44709928924442033, 1.6621495887309192]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[1.1273665829731985, 1.9939163092606038]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21.E6 | (\sqrt{rp}/z)\CarlsonsymellintRJ@{0}{y}{z}{p} = {(r-1)}\CarlsonsymellintRF@{0}{y}{z}\CarlsonsymellintRD@{p}{rz}{z}+\CarlsonsymellintRD@{0}{y}{z}\CarlsonsymellintRF@{p}{rz}{z} |
Error
|
(Sqrt[r*p]/(x + y*I))*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == (r - 1)*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]*3*(EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]-EllipticE[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)])/((x + y*I-r*(x + y*I))*(x + y*I-p)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticE[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/((x + y*I-y)*(x + y*I-0)^(1/2))*EllipticF[ArcCos[Sqrt[p/x + y*I]],(x + y*I-r*(x + y*I))/(x + y*I-p)]/Sqrt[x + y*I-p]
|
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Complex[-0.019107479205769995, -0.26821779662698253]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[1.626010920193221, 0.604709928225457]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[r, -1.5], Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data | |
19.21.E7 | (x-y)\CarlsonsymellintRD@{y}{z}{x}+(z-y)\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z}-3\sqrt{y/(xz)} |
|
Error
|
(x - y)*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+((x + y*I)- y)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*Sqrt[y/(x*(x + y*I))]
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Complex[2.01816993619941, -7.647648832317454]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[1.9029767059950156, 2.211761239496786]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E8 | \CarlsonsymellintRD@{y}{z}{x}+\CarlsonsymellintRD@{z}{x}{y}+\CarlsonsymellintRD@{x}{y}{z} = 3(xyz)^{-1/2} |
|
Error
|
3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+ 3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*(x*y*(x + y*I))^(- 1/2)
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Complex[0.061772053426947915, 0.22732915812456822]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E9 | x\CarlsonsymellintRD@{y}{z}{x}+y\CarlsonsymellintRD@{z}{x}{y}+z\CarlsonsymellintRD@{x}{y}{z} = 3\CarlsonsymellintRF@{x}{y}{z} |
|
Error
|
x*3*(EllipticF[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)]-EllipticE[ArcCos[Sqrt[y/x]],(x-x + y*I)/(x-y)])/((x-x + y*I)*(x-y)^(1/2))+ y*3*(EllipticF[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)]-EllipticE[ArcCos[Sqrt[x + y*I/y]],(y-x)/(y-x + y*I)])/((y-x)*(y-x + y*I)^(1/2))+(x + y*I)*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2)) == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]
|
Missing Macro Error | Aborted | - | Failed [18 / 18]
Result: Complex[0.3490343350525606, -4.182689157514275]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Indeterminate
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |
19.21.E10 | 2\CarlsonsymellintRG@{x}{y}{z} = z\CarlsonsymellintRF@{x}{y}{z}-\tfrac{1}{3}(x-z)(y-z)\CarlsonsymellintRD@{x}{y}{z}+\sqrt{xy/z} |
Error
|
2*Sqrt[x + y*I-x]*(EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+(Cot[ArcCos[Sqrt[x/x + y*I]]])^2*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]+Cot[ArcCos[Sqrt[x/x + y*I]]]*Sqrt[1-k^2*Sin[ArcCos[Sqrt[x/x + y*I]]]^2]) == (x + y*I)*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]-Divide[1,3]*(x -(x + y*I))*(y -(x + y*I))*3*(EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticE[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/((x + y*I-y)*(x + y*I-x)^(1/2))+Sqrt[x*y/(x + y*I)]
|
Missing Macro Error | Failure | - | Failed [18 / 18]
Result: Plus[Complex[-2.045465659795318, -0.2973389532409781], Times[Complex[1.7320508075688772, -1.732050807568877], Plus[Complex[0.9985512968581824, 0.2012315241723115], Times[Complex[0.3176872874027722, -1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, -1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}
Result: Plus[Complex[-2.0191372830755783, 1.5655011975568338], Times[Complex[1.7320508075688772, 1.732050807568877], Plus[Complex[1.0566228789425183, 0.3443432776585209], Times[Complex[0.3176872874027722, 1.049249833251038], Power[Plus[1.0, Times[Complex[0.0, 1.5], Power[k, 2]]], Rational[1, 2]]]]]]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data | |
19.21.E12 | (p-x)\CarlsonsymellintRJ@{x}{y}{z}{p}+(q-x)\CarlsonsymellintRJ@{x}{y}{z}{q} = 3\CarlsonsymellintRF@{x}{y}{z}-3\CarlsonellintRC@{\xi}{\eta} |
|
Error
|
(p - x)*3*(x + y*I-x)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x]+(q - x)*3*(x + y*I-x)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-x),ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]-EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)])/Sqrt[x + y*I-x] == 3*EllipticF[ArcCos[Sqrt[x/x + y*I]],(x + y*I-y)/(x + y*I-x)]/Sqrt[x + y*I-x]- 3*1/Sqrt[\[Eta]]*Hypergeometric2F1[1/2,1/2,3/2,1-(\[Xi])/(\[Eta])]
|
Missing Macro Error | Aborted | - | Failed [300 / 300]
Result: Indeterminate
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}
Result: Complex[5.153237655786464, -3.718995107844719]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5], Rule[η, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[ξ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}
... skip entries to safe data |
19.21#Ex1 | (p-x)(q-x) = (y-x)(z-x) |
|
(p - x)*(q - x) = (y - x)*((x + y*I)- x) |
(p - x)*(q - x) == (y - x)*((x + y*I)- x) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.21#Ex2 | \xi = yz/x |
|
xi = y*z/x |
\[Xi] == y*z/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.21#Ex3 | \eta = pq/x |
|
eta = p*q/x |
\[Eta] == p*q/x |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.21.E14 | \eta-\xi = p+q-y-z |
|
eta - xi = p + q - y -(x + y*I) |
\[Eta]- \[Xi] == p + q - y -(x + y*I) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
19.21.E15 | p\CarlsonsymellintRJ@{0}{y}{z}{p}+q\CarlsonsymellintRJ@{0}{y}{z}{q} = 3\CarlsonsymellintRF@{0}{y}{z} |
Error
|
p*3*(x + y*I-0)/(x + y*I-p)*(EllipticPi[(x + y*I-p)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0]+ q*3*(x + y*I-0)/(x + y*I-q)*(EllipticPi[(x + y*I-q)/(x + y*I-0),ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]-EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)])/Sqrt[x + y*I-0] == 3*EllipticF[ArcCos[Sqrt[0/x + y*I]],(x + y*I-y)/(x + y*I-0)]/Sqrt[x + y*I-0]
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-0.5878632565330948, -3.2355968294614907]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[-2.320767562800481, 3.5603464097743847]
Test Values: {Rule[p, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[q, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[x, 1.5], Rule[y, 1.5]}
... skip entries to safe data |