20.11: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/20.11.E5 20.11.E5] | | | [https://dlmf.nist.gov/20.11.E5 20.11.E5] || <math qid="Q6846">\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} = \Jacobithetatau{3}^{2}@{0}{\tau}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} = \Jacobithetatau{3}^{2}@{0}{\tau}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>hypergeom([(1)/(2),(1)/(2)], [1], ((JacobiTheta2(0,exp(I*Pi*tau)))^(2)/(JacobiTheta3(0,exp(I*Pi*tau)))^(2))^(2)) = (JacobiTheta3(0,exp(I*Pi*tau)))^(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, ((EllipticTheta[2, 0, Exp[I*Pi*(\[Tau])]])^(2)/(EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2))^(2)] == (EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2)</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 10] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:56, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
20.11.E5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} = \Jacobithetatau{3}^{2}@{0}{\tau}}
\genhyperF{2}{1}@{\tfrac{1}{2},\tfrac{1}{2}}{1}{k^{2}} = \Jacobithetatau{3}^{2}@{0}{\tau} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | hypergeom([(1)/(2),(1)/(2)], [1], ((JacobiTheta2(0,exp(I*Pi*tau)))^(2)/(JacobiTheta3(0,exp(I*Pi*tau)))^(2))^(2)) = (JacobiTheta3(0,exp(I*Pi*tau)))^(2)
|
HypergeometricPFQ[{Divide[1,2],Divide[1,2]}, {1}, ((EllipticTheta[2, 0, Exp[I*Pi*(\[Tau])]])^(2)/(EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2))^(2)] == (EllipticTheta[3, 0, Exp[I*Pi*(\[Tau])]])^(2)
|
Failure | Failure | Error | Successful [Tested: 10] |