23.5: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/23.5.E2 23.5.E2] | | | [https://dlmf.nist.gov/23.5.E2 23.5.E2] || <math qid="Q7228">\eta_{1} = i\eta_{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta_{1} = i\eta_{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta[1] = I*eta[3]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Eta], 1] == I*Subscript[\[Eta], 3]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/23.5#Ex7 23.5#Ex7] | | | [https://dlmf.nist.gov/23.5#Ex7 23.5#Ex7] || <math qid="Q7233">k^{2} = \tfrac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>k^{2} = \tfrac{1}{2}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(k)^(2) = (1)/(2)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(k)^(2) == Divide[1,2]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.5#Ex8 23.5#Ex8] | | | [https://dlmf.nist.gov/23.5#Ex8 23.5#Ex8] || <math qid="Q7234">\compellintKk@{k} = \compellintKk'@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{k} = \compellintKk'@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(k) = diff( EllipticK(k), k$(1) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(k)^2] == D[EllipticK[(k)^2], {k, 1}]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.3320292471861073, -1.3934110303935494] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.3320292471861073, -1.3934110303935494] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.5#Ex8 23.5#Ex8] | | | [https://dlmf.nist.gov/23.5#Ex8 23.5#Ex8] || <math qid="Q7234">\compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>diff( EllipticK(k), k$(1) ) = ((GAMMA((1)/(4)))^(2))/(4*sqrt(Pi))</syntaxhighlight> || <syntaxhighlight lang=mathematica>D[EllipticK[(k)^2], {k, 1}] == Divide[(Gamma[Divide[1,4]])^(2),4*Sqrt[Pi]]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.343228747081181, 0.3151532066437278] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.343228747081181, 0.3151532066437278] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- style="background: #dfe6e9;" | |- style="background: #dfe6e9;" | ||
| [https://dlmf.nist.gov/23.5.E6 23.5.E6] | | | [https://dlmf.nist.gov/23.5.E6 23.5.E6] || <math qid="Q7235">\eta_{1} = e^{\pi i/3}\eta_{3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\eta_{1} = e^{\pi i/3}\eta_{3}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta[1] = exp(Pi*I/3)*eta[3]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[\[Eta], 1] == Exp[Pi*I/3]*Subscript[\[Eta], 3]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || - | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.5#Ex11 23.5#Ex11] | | | [https://dlmf.nist.gov/23.5#Ex11 23.5#Ex11] || <math qid="Q7239">k^{2} = e^{\iunit\pi/3}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>k^{2} = e^{\iunit\pi/3}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(k)^(2) = exp(I*Pi/3)</syntaxhighlight> || <syntaxhighlight lang=mathematica>(k)^(2) == Exp[I*Pi/3]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .5000000000-.8660254040*I | ||
Test Values: {k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.500000000-.8660254040*I | Test Values: {k = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: 3.500000000-.8660254040*I | ||
Test Values: {k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4999999999999999, -0.8660254037844386] | Test Values: {k = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.4999999999999999, -0.8660254037844386] | ||
Line 34: | Line 34: | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.5#Ex12 23.5#Ex12] | | | [https://dlmf.nist.gov/23.5#Ex12 23.5#Ex12] || <math qid="Q7240">\compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>EllipticK(k) = exp(I*Pi/6)*diff( EllipticK(k), k$(1) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>EllipticK[(k)^2] == Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.4240716315220228, -1.1066114718975122] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[1.4240716315220228, -1.1066114718975122] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.5#Ex12 23.5#Ex12] | | | [https://dlmf.nist.gov/23.5#Ex12 23.5#Ex12] || <math qid="Q7240">e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>exp(I*Pi/6)*diff( EllipticK(k), k$(1) ) = exp(I*Pi/12)*((3)^(1/4)*(GAMMA((1)/(3)))^(3))/((2)^(7/3)* Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}] == Exp[I*Pi/12]*Divide[(3)^(1/4)*(Gamma[Divide[1,3]])^(3),(2)^(7/3)* Pi]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [3 / 3]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.1248830880335463, -0.38527593877730804] | Test Values: {Rule[k, 1]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[-2.1248830880335463, -0.38527593877730804] | ||
Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[k, 2]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:00, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
23.5.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = i\eta_{3}}
\eta_{1} = i\eta_{3} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | eta[1] = I*eta[3] |
Subscript[\[Eta], 1] == I*Subscript[\[Eta], 3] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.5#Ex7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2} = \tfrac{1}{2}}
k^{2} = \tfrac{1}{2} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (k)^(2) = (1)/(2) |
(k)^(2) == Divide[1,2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.5#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = \compellintKk'@{k}}
\compellintKk@{k} = \compellintKk'@{k} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | EllipticK(k) = diff( EllipticK(k), k$(1) )
|
EllipticK[(k)^2] == D[EllipticK[(k)^2], {k, 1}]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[1.3320292471861073, -1.3934110303935494]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
23.5#Ex8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)}}
\compellintKk'@{k} = \ifrac{\left(\EulerGamma@{\tfrac{1}{4}}\right)^{2}}{\left(4\sqrt{\pi}\right)} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | diff( EllipticK(k), k$(1) ) = ((GAMMA((1)/(4)))^(2))/(4*sqrt(Pi))
|
D[EllipticK[(k)^2], {k, 1}] == Divide[(Gamma[Divide[1,4]])^(2),4*Sqrt[Pi]]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-2.343228747081181, 0.3151532066437278]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
23.5.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \eta_{1} = e^{\pi i/3}\eta_{3}}
\eta_{1} = e^{\pi i/3}\eta_{3} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | eta[1] = exp(Pi*I/3)*eta[3] |
Subscript[\[Eta], 1] == Exp[Pi*I/3]*Subscript[\[Eta], 3] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
23.5#Ex11 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle k^{2} = e^{\iunit\pi/3}}
k^{2} = e^{\iunit\pi/3} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (k)^(2) = exp(I*Pi/3)
|
(k)^(2) == Exp[I*Pi/3]
|
Failure | Failure | Failed [3 / 3] Result: .5000000000-.8660254040*I
Test Values: {k = 1}
Result: 3.500000000-.8660254040*I
Test Values: {k = 2}
... skip entries to safe data |
Failed [3 / 3]
Result: Complex[0.4999999999999999, -0.8660254037844386]
Test Values: {Rule[k, 1]}
Result: Complex[3.5, -0.8660254037844386]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
23.5#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k}}
\compellintKk@{k} = e^{\iunit\pi/6}\compellintKk'@{k} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | EllipticK(k) = exp(I*Pi/6)*diff( EllipticK(k), k$(1) )
|
EllipticK[(k)^2] == Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[1.4240716315220228, -1.1066114718975122]
Test Values: {Rule[k, 2]}
... skip entries to safe data |
23.5#Ex12 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi}}
e^{\iunit\pi/6}\compellintKk'@{k} = e^{\iunit\pi/12}\frac{3^{1/4}\left(\EulerGamma@{\frac{1}{3}}\right)^{3}}{2^{7/3}\pi} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | exp(I*Pi/6)*diff( EllipticK(k), k$(1) ) = exp(I*Pi/12)*((3)^(1/4)*(GAMMA((1)/(3)))^(3))/((2)^(7/3)* Pi)
|
Exp[I*Pi/6]*D[EllipticK[(k)^2], {k, 1}] == Exp[I*Pi/12]*Divide[(3)^(1/4)*(Gamma[Divide[1,3]])^(3),(2)^(7/3)* Pi]
|
Failure | Failure | Error | Failed [3 / 3]
Result: Indeterminate
Test Values: {Rule[k, 1]}
Result: Complex[-2.1248830880335463, -0.38527593877730804]
Test Values: {Rule[k, 2]}
... skip entries to safe data |