23.17: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/23.17#Ex1 23.17#Ex1] || [[Item:Q7340|<math>\modularlambdatau@{i} = \tfrac{1}{2}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{i} = \tfrac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[I] == Divide[1,2]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/23.17#Ex1 23.17#Ex1] || <math qid="Q7340">\modularlambdatau@{i} = \tfrac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{i} = \tfrac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[I] == Divide[1,2]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/23.17#Ex3 23.17#Ex3] || [[Item:Q7342|<math>\KleincompinvarJtau@{i} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KleincompinvarJtau@{i} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>KleinInvariantJ[I] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/23.17#Ex3 23.17#Ex3] || <math qid="Q7342">\KleincompinvarJtau@{i} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KleincompinvarJtau@{i} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>KleinInvariantJ[I] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/23.17#Ex5 23.17#Ex5] || [[Item:Q7344|<math>\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/23.17#Ex5 23.17#Ex5] || <math qid="Q7344">\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/23.17.E6 23.17.E6] || [[Item:Q7348|<math>\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
| [https://dlmf.nist.gov/23.17.E6 23.17.E6] || <math qid="Q7348">\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/23.17.E7 23.17.E7] || [[Item:Q7349|<math>\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [24 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
| [https://dlmf.nist.gov/23.17.E7 23.17.E7] || <math qid="Q7349">\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [24 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/23.17.E8 23.17.E8] || [[Item:Q7350|<math>\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/23.17.E8 23.17.E8] || <math qid="Q7350">\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 12:01, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
23.17#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{i} = \tfrac{1}{2}}
\modularlambdatau@{i} = \tfrac{1}{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ModularLambda[I] == Divide[1,2]
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KleincompinvarJtau@{i} = 1}
\KleincompinvarJtau@{i} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
KleinInvariantJ[I] == 1
Missing Macro Error Successful - Successful [Tested: 1]
23.17#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}}
\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]
Missing Macro Error Successful - Successful [Tested: 1]
23.17.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}}
\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}

Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

... skip entries to safe data
23.17.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}}
\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [24 / 100]
Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
23.17.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})}
\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
Error
DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [4 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}

... skip entries to safe data