23.17: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17#Ex1 23.17#Ex1] | | | [https://dlmf.nist.gov/23.17#Ex1 23.17#Ex1] || <math qid="Q7340">\modularlambdatau@{i} = \tfrac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{i} = \tfrac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[I] == Divide[1,2]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17#Ex3 23.17#Ex3] | | | [https://dlmf.nist.gov/23.17#Ex3 23.17#Ex3] || <math qid="Q7342">\KleincompinvarJtau@{i} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\KleincompinvarJtau@{i} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>KleinInvariantJ[I] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17#Ex5 23.17#Ex5] | | | [https://dlmf.nist.gov/23.17#Ex5 23.17#Ex5] || <math qid="Q7344">\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17.E6 23.17.E6] | | | [https://dlmf.nist.gov/23.17.E6 23.17.E6] || <math qid="Q7348">\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]] | ||
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]] | Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]] | ||
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17.E7 23.17.E7] | | | [https://dlmf.nist.gov/23.17.E7 23.17.E7] || <math qid="Q7349">\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [24 / 100]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Indeterminate | ||
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|- | |- | ||
| [https://dlmf.nist.gov/23.17.E8 23.17.E8] | | | [https://dlmf.nist.gov/23.17.E8 23.17.E8] || <math qid="Q7350">\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [4 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: DirectedInfinity[] | ||
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}</syntaxhighlight><br>... skip entries to safe data</div></div> | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 12:01, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
23.17#Ex1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{i} = \tfrac{1}{2}}
\modularlambdatau@{i} = \tfrac{1}{2} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
ModularLambda[I] == Divide[1,2]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
23.17#Ex3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \KleincompinvarJtau@{i} = 1}
\KleincompinvarJtau@{i} = 1 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
KleinInvariantJ[I] == 1
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
23.17#Ex5 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}}}
\Dedekindeta@{i} = \frac{\EulerGamma@{\tfrac{1}{4}}}{2\pi^{3/4}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[I] == Divide[Gamma[Divide[1,4]],2*(Pi)^(3/4)]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
23.17.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12}}
\Dedekindeta@{\tau} = \sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/12} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[\[Tau]] == Sum[(- 1)^(n)* (q)^((6*n + 1)^(2)/12), {n, - Infinity, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [10 / 10]
Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[τ, Complex[0, 1]]}
Result: Plus[0.7682254223260567, Times[-1.0, NSum[Times[Power[-1, n], Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Times[Rational[1, 12], Power[Plus[1, Times[6, n]], 2]]]]
Test Values: {n, DirectedInfinity[-1], DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}
... skip entries to safe data |
23.17.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8}}
\modularlambdatau@{\tau} = 16q\prod_{n=1}^{\infty}\left(\frac{1+q^{2n}}{1+q^{2n-1}}\right)^{8} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
ModularLambda[\[Tau]] == 16*q*Product[(Divide[1 + (q)^(2*n),1 + (q)^(2*n - 1)])^(8), {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [24 / 100]
Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
23.17.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n})}
\Dedekindeta@{\tau} = q^{1/12}\prod_{n=1}^{\infty}(1-q^{2n}) |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | Error
|
DedekindEta[\[Tau]] == (q)^(1/12)* Product[1 - (q)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
|
Missing Macro Error | Failure | - | Failed [4 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[τ, Complex[0, 1]]}
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[τ, Complex[0, 1]]}
... skip entries to safe data |