24.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/24.5.E1 24.5.E1] || [[Item:Q7453|<math>\sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*bernoulli(k, x), k = 0..n - 1) = n*(x)^(n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*BernoulliB[k, x], {k, 0, n - 1}, GenerateConditions->None] == n*(x)^(n - 1)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 9]
| [https://dlmf.nist.gov/24.5.E1 24.5.E1] || <math qid="Q7453">\sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*bernoulli(k, x), k = 0..n - 1) = n*(x)^(n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*BernoulliB[k, x], {k, 0, n - 1}, GenerateConditions->None] == n*(x)^(n - 1)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E2 24.5.E2] || [[Item:Q7454|<math>\sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*euler(k, x), k = 0..n)+ euler(n, x) = 2*(x)^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*EulerE[k, x], {k, 0, n}, GenerateConditions->None]+ EulerE[n, x] == 2*(x)^(n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 9]
| [https://dlmf.nist.gov/24.5.E2 24.5.E2] || <math qid="Q7454">\sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*euler(k, x), k = 0..n)+ euler(n, x) = 2*(x)^(n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*EulerE[k, x], {k, 0, n}, GenerateConditions->None]+ EulerE[n, x] == 2*(x)^(n)</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 9]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E3 24.5.E3] || [[Item:Q7455|<math>\sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*bernoulli(k), k = 0..n - 1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*BernoulliB[k], {k, 0, n - 1}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Successful || Successful [Tested: 1] || Successful [Tested: 1]
| [https://dlmf.nist.gov/24.5.E3 24.5.E3] || <math qid="Q7455">\sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*bernoulli(k), k = 0..n - 1) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*BernoulliB[k], {k, 0, n - 1}, GenerateConditions->None] == 0</syntaxhighlight> || Failure || Successful || Successful [Tested: 1] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E4 24.5.E4] || [[Item:Q7456|<math>\sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(2*n,2*k)*euler(2*k), k = 0..n) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[2*n,2*k]*EulerE[2*k], {k, 0, n}, GenerateConditions->None] == 0</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.5.E4 24.5.E4] || <math qid="Q7456">\sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(2*n,2*k)*euler(2*k), k = 0..n) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[2*n,2*k]*EulerE[2*k], {k, 0, n}, GenerateConditions->None] == 0</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E5 24.5.E5] || [[Item:Q7457|<math>\sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*(2)^(k)* euler(n - k), k = 0..n)+ euler(n) = 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*(2)^(k)* EulerE[n - k], {k, 0, n}, GenerateConditions->None]+ EulerE[n] == 2</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.5.E5 24.5.E5] || <math qid="Q7457">\sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*(2)^(k)* euler(n - k), k = 0..n)+ euler(n) = 2</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*(2)^(k)* EulerE[n - k], {k, 0, n}, GenerateConditions->None]+ EulerE[n] == 2</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E6 24.5.E6] || [[Item:Q7458|<math>\sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k - 2)*(bernoulli(k))/(k), k = 2..n) = (1)/((n + 1)*(n + 2))- bernoulli(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k - 2]*Divide[BernoulliB[k],k], {k, 2, n}, GenerateConditions->None] == Divide[1,(n + 1)*(n + 2)]- BernoulliB[n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.5.E6 24.5.E6] || <math qid="Q7458">\sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k - 2)*(bernoulli(k))/(k), k = 2..n) = (1)/((n + 1)*(n + 2))- bernoulli(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k - 2]*Divide[BernoulliB[k],k], {k, 2, n}, GenerateConditions->None] == Divide[1,(n + 1)*(n + 2)]- BernoulliB[n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E7 24.5.E7] || [[Item:Q7459|<math>\sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*(bernoulli(k))/(n + 2 - k), k = 0..n) = (bernoulli(n + 1))/(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*Divide[BernoulliB[k],n + 2 - k], {k, 0, n}, GenerateConditions->None] == Divide[BernoulliB[n + 1],n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.5.E7 24.5.E7] || <math qid="Q7459">\sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(binomial(n,k)*(bernoulli(k))/(n + 2 - k), k = 0..n) = (bernoulli(n + 1))/(n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Binomial[n,k]*Divide[BernoulliB[k],n + 2 - k], {k, 0, n}, GenerateConditions->None] == Divide[BernoulliB[n + 1],n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/24.5.E8 24.5.E8] || [[Item:Q7460|<math>\sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(((2)^(2*k)* bernoulli(2*k))/(factorial(2*k)*factorial(2*n + 1 - 2*k)), k = 0..n) = (1)/(factorial(2*n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(2)^(2*k)* BernoulliB[2*k],(2*k)!*(2*n + 1 - 2*k)!], {k, 0, n}, GenerateConditions->None] == Divide[1,(2*n)!]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
| [https://dlmf.nist.gov/24.5.E8 24.5.E8] || <math qid="Q7460">\sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sum(((2)^(2*k)* bernoulli(2*k))/(factorial(2*k)*factorial(2*n + 1 - 2*k)), k = 0..n) = (1)/(factorial(2*n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[Divide[(2)^(2*k)* BernoulliB[2*k],(2*k)!*(2*n + 1 - 2*k)!], {k, 0, n}, GenerateConditions->None] == Divide[1,(2*n)!]</syntaxhighlight> || Failure || Failure || Successful [Tested: 1] || Successful [Tested: 3]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/24.5#Ex1 24.5#Ex1] || [[Item:Q7461|<math>a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] = sum(binomial(n,k)*(b[n - k])/(k + 1), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] == Sum[Binomial[n,k]*Divide[Subscript[b, n - k],k + 1], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/24.5#Ex1 24.5#Ex1] || <math qid="Q7461">a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">a[n] = sum(binomial(n,k)*(b[n - k])/(k + 1), k = 0..n)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[a, n] == Sum[Binomial[n,k]*Divide[Subscript[b, n - k],k + 1], {k, 0, n}, GenerateConditions->None]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/24.5#Ex2 24.5#Ex2] || [[Item:Q7462|<math>b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>b[n] = sum(binomial(n,k)*bernoulli(k)*a[n - k], k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[b, n] == Sum[Binomial[n,k]*BernoulliB[k]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I
| [https://dlmf.nist.gov/24.5#Ex2 24.5#Ex2] || <math qid="Q7462">b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>b[n] = sum(binomial(n,k)*bernoulli(k)*a[n - k], k = 0..n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[b, n] == Sum[Binomial[n,k]*BernoulliB[k]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .4330127020+.2500000000*I
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7216878367+.4166666667*I
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 1}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .7216878367+.4166666667*I
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.43301270189221935, 0.24999999999999997]
Line 38: Line 38:
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/24.5#Ex3 24.5#Ex3] || [[Item:Q7463|<math>a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>a[n] = sum(binomial(n,2*k)*b[n - 2*k], k = 0..floor((n)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[a, n] == Sum[Binomial[n,2*k]*Subscript[b, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I
| [https://dlmf.nist.gov/24.5#Ex3 24.5#Ex3] || <math qid="Q7463">a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>a[n] = sum(binomial(n,2*k)*b[n - 2*k], k = 0..floor((n)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[a, n] == Sum[Binomial[n,2*k]*Subscript[b, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -.8660254040-.5000000000*I
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.598076212-1.500000000*I
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.598076212-1.500000000*I
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8660254037844387, -0.49999999999999994]
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 3}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [288 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.8660254037844387, -0.49999999999999994]
Line 44: Line 44:
Test Values: {Rule[n, 3], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/24.5#Ex4 24.5#Ex4] || [[Item:Q7464|<math>b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>b[n] = sum(binomial(n,2*k)*euler(2*k)*a[n - 2*k], k = 0..floor((n)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[b, n] == Sum[Binomial[n,2*k]*EulerE[2*k]*Subscript[a, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [290 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8660254037844387, 0.49999999999999994]
| [https://dlmf.nist.gov/24.5#Ex4 24.5#Ex4] || <math qid="Q7464">b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>b[n] = sum(binomial(n,2*k)*euler(2*k)*a[n - 2*k], k = 0..floor((n)/(2)))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[b, n] == Sum[Binomial[n,2*k]*EulerE[2*k]*Subscript[a, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || <div class="toccolours mw-collapsible mw-collapsed">Failed [290 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.598076211353316, 1.4999999999999998]
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: Complex[2.598076211353316, 1.4999999999999998]
Test Values: {Rule[n, 3], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[n, 3], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|}
|}
</div>
</div>

Latest revision as of 12:02, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
24.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}}
\sum_{k=0}^{n-1}{n\choose k}\BernoullipolyB{k}@{x} = nx^{n-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k)*bernoulli(k, x), k = 0..n - 1) = n*(x)^(n - 1)
Sum[Binomial[n,k]*BernoulliB[k, x], {k, 0, n - 1}, GenerateConditions->None] == n*(x)^(n - 1)
Failure Failure Successful [Tested: 3] Successful [Tested: 9]
24.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}}
\sum_{k=0}^{n}{n\choose k}\EulerpolyE{k}@{x}+\EulerpolyE{n}@{x} = 2x^{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k)*euler(k, x), k = 0..n)+ euler(n, x) = 2*(x)^(n)
Sum[Binomial[n,k]*EulerE[k, x], {k, 0, n}, GenerateConditions->None]+ EulerE[n, x] == 2*(x)^(n)
Failure Failure Successful [Tested: 3] Successful [Tested: 9]
24.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0}
\sum_{k=0}^{n-1}{n\choose k}\BernoullinumberB{k} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k)*bernoulli(k), k = 0..n - 1) = 0
Sum[Binomial[n,k]*BernoulliB[k], {k, 0, n - 1}, GenerateConditions->None] == 0
Failure Successful Successful [Tested: 1] Successful [Tested: 1]
24.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0}
\sum_{k=0}^{n}{2n\choose 2k}\EulernumberE{2k} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(2*n,2*k)*euler(2*k), k = 0..n) = 0
Sum[Binomial[2*n,2*k]*EulerE[2*k], {k, 0, n}, GenerateConditions->None] == 0
Missing Macro Error Failure - Successful [Tested: 3]
24.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2}
\sum_{k=0}^{n}{n\choose k}2^{k}\EulernumberE{n-k}+\EulernumberE{n} = 2
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k)*(2)^(k)* euler(n - k), k = 0..n)+ euler(n) = 2
Sum[Binomial[n,k]*(2)^(k)* EulerE[n - k], {k, 0, n}, GenerateConditions->None]+ EulerE[n] == 2
Missing Macro Error Failure - Successful [Tested: 3]
24.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}}
\sum_{k=2}^{n}{n\choose k-2}\frac{\BernoullinumberB{k}}{k} = \frac{1}{(n+1)(n+2)}-\BernoullinumberB{n+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k - 2)*(bernoulli(k))/(k), k = 2..n) = (1)/((n + 1)*(n + 2))- bernoulli(n + 1)
Sum[Binomial[n,k - 2]*Divide[BernoulliB[k],k], {k, 2, n}, GenerateConditions->None] == Divide[1,(n + 1)*(n + 2)]- BernoulliB[n + 1]
Failure Failure Successful [Tested: 1] Successful [Tested: 3]
24.5.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}}
\sum_{k=0}^{n}{n\choose k}\frac{\BernoullinumberB{k}}{n+2-k} = \frac{\BernoullinumberB{n+1}}{n+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(n,k)*(bernoulli(k))/(n + 2 - k), k = 0..n) = (bernoulli(n + 1))/(n + 1)
Sum[Binomial[n,k]*Divide[BernoulliB[k],n + 2 - k], {k, 0, n}, GenerateConditions->None] == Divide[BernoulliB[n + 1],n + 1]
Failure Failure Successful [Tested: 1] Successful [Tested: 3]
24.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}}
\sum_{k=0}^{n}\frac{2^{2k}\BernoullinumberB{2k}}{(2k)!(2n+1-2k)!} = \frac{1}{(2n)!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(((2)^(2*k)* bernoulli(2*k))/(factorial(2*k)*factorial(2*n + 1 - 2*k)), k = 0..n) = (1)/(factorial(2*n))
Sum[Divide[(2)^(2*k)* BernoulliB[2*k],(2*k)!*(2*n + 1 - 2*k)!], {k, 0, n}, GenerateConditions->None] == Divide[1,(2*n)!]
Failure Failure Successful [Tested: 1] Successful [Tested: 3]
24.5#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}}
a_{n} = \sum_{k=0}^{n}{n\choose k}\frac{b_{n-k}}{k+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
a[n] = sum(binomial(n,k)*(b[n - k])/(k + 1), k = 0..n)
Subscript[a, n] == Sum[Binomial[n,k]*Divide[Subscript[b, n - k],k + 1], {k, 0, n}, GenerateConditions->None]
Skipped - no semantic math Skipped - no semantic math - -
24.5#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}}
b_{n} = \sum_{k=0}^{n}{n\choose k}\BernoullinumberB{k}a_{n-k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
b[n] = sum(binomial(n,k)*bernoulli(k)*a[n - k], k = 0..n)
Subscript[b, n] == Sum[Binomial[n,k]*BernoulliB[k]*Subscript[a, n - k], {k, 0, n}, GenerateConditions->None]
Failure Failure
Failed [300 / 300]
Result: .4330127020+.2500000000*I
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: .7216878367+.4166666667*I
Test Values: {a[n-k] = 1/2*3^(1/2)+1/2*I, b[n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[n, 1], Rule[Subscript[a, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7216878364870323, 0.41666666666666663]
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-1, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.5#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}}
a_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}b_{n-2k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
a[n] = sum(binomial(n,2*k)*b[n - 2*k], k = 0..floor((n)/(2)))
Subscript[a, n] == Sum[Binomial[n,2*k]*Subscript[b, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]
Failure Failure
Failed [288 / 300]
Result: -.8660254040-.5000000000*I
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 2}

Result: -2.598076212-1.500000000*I
Test Values: {a[n] = 1/2*3^(1/2)+1/2*I, b[n-2*k] = 1/2*3^(1/2)+1/2*I, n = 3}

... skip entries to safe data
Failed [288 / 300]
Result: Complex[-0.8660254037844387, -0.49999999999999994]
Test Values: {Rule[n, 2], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.598076211353316, -1.4999999999999998]
Test Values: {Rule[n, 3], Rule[Subscript[a, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.5#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}}
b_{n} = \sum_{k=0}^{\floor{\ifrac{n}{2}}}{n\choose 2k}\EulernumberE{2k}a_{n-2k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
b[n] = sum(binomial(n,2*k)*euler(2*k)*a[n - 2*k], k = 0..floor((n)/(2)))
Subscript[b, n] == Sum[Binomial[n,2*k]*EulerE[2*k]*Subscript[a, n - 2*k], {k, 0, Floor[Divide[n,2]]}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [290 / 300]
Result: Complex[0.8660254037844387, 0.49999999999999994]
Test Values: {Rule[n, 2], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.598076211353316, 1.4999999999999998]
Test Values: {Rule[n, 3], Rule[Subscript[a, Plus[Times[-2, k], n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data