26.5: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || [[Item:Q7796|<math>\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(n + 1)*binomial(2*n,n) = (1)/(2*n + 1)*binomial(2*n + 1,n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,n + 1]*Binomial[2*n,n] == Divide[1,2*n + 1]*Binomial[2*n + 1,n]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || <math qid="Q7796">\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(n + 1)*binomial(2*n,n) = (1)/(2*n + 1)*binomial(2*n + 1,n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,n + 1]*Binomial[2*n,n] == Divide[1,2*n + 1]*Binomial[2*n + 1,n]</syntaxhighlight> || Successful || Successful || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || [[Item:Q7796|<math>\frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2*n + 1)*binomial(2*n + 1,n) = binomial(2*n,n)-binomial(2*n,n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*n + 1]*Binomial[2*n + 1,n] == Binomial[2*n,n]-Binomial[2*n,n - 1]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || <math qid="Q7796">\frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1)/(2*n + 1)*binomial(2*n + 1,n) = binomial(2*n,n)-binomial(2*n,n - 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[1,2*n + 1]*Binomial[2*n + 1,n] == Binomial[2*n,n]-Binomial[2*n,n - 1]</syntaxhighlight> || Successful || Failure || Skip - symbolical successful subtest || Successful [Tested: 3]
|-  
|-  
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || [[Item:Q7796|<math>\binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(2*n,n)-binomial(2*n,n - 1) = binomial(2*n - 1,n)-binomial(2*n - 1,n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[2*n,n]-Binomial[2*n,n - 1] == Binomial[2*n - 1,n]-Binomial[2*n - 1,n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
| [https://dlmf.nist.gov/26.5.E1 26.5.E1] || <math qid="Q7796">\binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>binomial(2*n,n)-binomial(2*n,n - 1) = binomial(2*n - 1,n)-binomial(2*n - 1,n + 1)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Binomial[2*n,n]-Binomial[2*n,n - 1] == Binomial[2*n - 1,n]-Binomial[2*n - 1,n + 1]</syntaxhighlight> || Failure || Failure || Successful [Tested: 3] || Successful [Tested: 3]
|}
|}
</div>
</div>

Latest revision as of 12:05, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}}
\frac{1}{n+1}\binom{2n}{n} = \frac{1}{2n+1}\binom{2n+1}{n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(n + 1)*binomial(2*n,n) = (1)/(2*n + 1)*binomial(2*n + 1,n)
Divide[1,n + 1]*Binomial[2*n,n] == Divide[1,2*n + 1]*Binomial[2*n + 1,n]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 3]
26.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}}
\frac{1}{2n+1}\binom{2n+1}{n} = \binom{2n}{n}-\binom{2n}{n-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(1)/(2*n + 1)*binomial(2*n + 1,n) = binomial(2*n,n)-binomial(2*n,n - 1)
Divide[1,2*n + 1]*Binomial[2*n + 1,n] == Binomial[2*n,n]-Binomial[2*n,n - 1]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 3]
26.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}}
\binom{2n}{n}-\binom{2n}{n-1} = \binom{2n-1}{n}-\binom{2n-1}{n+1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(2*n,n)-binomial(2*n,n - 1) = binomial(2*n - 1,n)-binomial(2*n - 1,n + 1)
Binomial[2*n,n]-Binomial[2*n,n - 1] == Binomial[2*n - 1,n]-Binomial[2*n - 1,n + 1]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]