27.3: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/27.3.E3 27.3.E3] || [[Item:Q8004|<math>\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None]</syntaxhighlight> || Translation Error || Translation Error || - || -
| [https://dlmf.nist.gov/27.3.E3 27.3.E3] || <math qid="Q8004">\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None]</syntaxhighlight> || Translation Error || Translation Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/27.3.E5 27.3.E5] || [[Item:Q8006|<math>\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || -
| [https://dlmf.nist.gov/27.3.E5 27.3.E5] || <math qid="Q8006">\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Error || Missing Macro Error || - || -
|-  
|-  
| [https://dlmf.nist.gov/27.3.E6 27.3.E6] || [[Item:Q8007|<math>\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}</syntaxhighlight> || <math>\alpha \neq 0</math> || <syntaxhighlight lang=mathematica>add(divisors(alpha)) = product(((p[r])^(alpha*(1 + a[r]))- 1)/((p[r])^(alpha)- 1), r = 1..ifactor(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || -
| [https://dlmf.nist.gov/27.3.E6 27.3.E6] || <math qid="Q8007">\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}</syntaxhighlight> || <math>\alpha \neq 0</math> || <syntaxhighlight lang=mathematica>add(divisors(alpha)) = product(((p[r])^(alpha*(1 + a[r]))- 1)/((p[r])^(alpha)- 1), r = 1..ifactor(n))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Failure || Missing Macro Error || Error || -
|-  
|-  
| [https://dlmf.nist.gov/27.3.E8 27.3.E8] || [[Item:Q8009|<math>\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/gcd(m , n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/GCD[m , n]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.
| [https://dlmf.nist.gov/27.3.E8 27.3.E8] || <math qid="Q8009">\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/gcd(m , n)</syntaxhighlight> || <syntaxhighlight lang=mathematica>EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/GCD[m , n]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [2 / 9]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.
Test Values: {m = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.
Test Values: {m = 2, n = 2}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -2.
Test Values: {m = 3, n = 3}</syntaxhighlight><br></div></div> || Successful [Tested: 9]
Test Values: {m = 3, n = 3}</syntaxhighlight><br></div></div> || Successful [Tested: 9]
|}
|}
</div>
</div>

Latest revision as of 12:06, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.3.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})}
\Eulertotientphi[]@{n} = n\prod_{p\divides n}(1-p^{-1})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
phi(n) = n*product(1 - (p)^(- 1), p**n in - infinity)
EulerPhi[n] == n*Product[1 - (p)^(- 1), {p**n, - Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
27.3.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})}
\ndivisors[]@{n} = \prod_{r=1}^{\nprimesdiv@{n}}(1+a_{r})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
numelems(Divisors(n)) = product(1 + a[r], r = 1..ifactor(n))
Error
Error Missing Macro Error - -
27.3.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}}
\sumdivisors{\alpha}@{n} = \prod_{r=1}^{\nprimesdiv@{n}}\frac{p^{\alpha(1+a_{r})}_{r}-1}{p^{\alpha}_{r}-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha \neq 0}
add(divisors(alpha)) = product(((p[r])^(alpha*(1 + a[r]))- 1)/((p[r])^(alpha)- 1), r = 1..ifactor(n))
Error
Failure Missing Macro Error Error -
27.3.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}}
\Eulertotientphi[]@{m}\Eulertotientphi[]@{n} = \Eulertotientphi[]@{mn}\Eulertotientphi[]@{\pgcd{m,n}}/\pgcd{m,n}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
phi(m)*phi(n) = phi(m*n)*phi(gcd(m , n))/gcd(m , n)
EulerPhi[m]*EulerPhi[n] == EulerPhi[m*n]*EulerPhi[GCD[m , n]]/GCD[m , n]
Failure Failure
Failed [2 / 9]
Result: -1.
Test Values: {m = 2, n = 2}

Result: -2.
Test Values: {m = 3, n = 3}

Successful [Tested: 9]