28.11: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/28.11.E3 28.11.E3] || [[Item:Q8293|<math>1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 = 2*sum((A[0])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == 2*Sum[(Subscript[A, 0])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.11.E3 28.11.E3] || <math qid="Q8293">1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>1 = 2*sum((A[0])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>1 == 2*Sum[(Subscript[A, 0])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.11.E4 28.11.E4] || [[Item:Q8294|<math>\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math>m \neq 0</math> || <syntaxhighlight lang=mathematica>cos(2*m*z) = sum((A[2*m])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*m*z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.11.E4 28.11.E4] || <math qid="Q8294">\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}</syntaxhighlight> || <math>m \neq 0</math> || <syntaxhighlight lang=mathematica>cos(2*m*z) = sum((A[2*m])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[2*m*z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.11.E5 28.11.E5] || [[Item:Q8295|<math>\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((2*m + 1)*z) = sum((A[2*m + 1])^(2*n + 1)(q)* MathieuCE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[(2*m + 1)*z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* MathieuC[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.11.E5 28.11.E5] || <math qid="Q8295">\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>cos((2*m + 1)*z) = sum((A[2*m + 1])^(2*n + 1)(q)* MathieuCE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Cos[(2*m + 1)*z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* MathieuC[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.11.E6 28.11.E6] || [[Item:Q8296|<math>\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 1)*z) = sum((B[2*m + 1])^(2*n + 1)(q)* MathieuSE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 1)*z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* MathieuS[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.11.E6 28.11.E6] || <math qid="Q8296">\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 1)*z) = sum((B[2*m + 1])^(2*n + 1)(q)* MathieuSE(2*n + 1, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 1)*z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* MathieuS[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|-  
|-  
| [https://dlmf.nist.gov/28.11.E7 28.11.E7] || [[Item:Q8297|<math>\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 2)*z) = sum((B[2*m + 2])^(2*n + 2)(q)* MathieuSE(2*n + 2, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 2)*z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* MathieuS[2*n + 2, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
| [https://dlmf.nist.gov/28.11.E7 28.11.E7] || <math qid="Q8297">\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>sin((2*m + 2)*z) = sum((B[2*m + 2])^(2*n + 2)(q)* MathieuSE(2*n + 2, q, z), n = 0..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sin[(2*m + 2)*z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* MathieuS[2*n + 2, q, z], {n, 0, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Skipped - Because timed out || Skipped - Because timed out
|}
|}
</div>
</div>

Latest revision as of 12:07, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
28.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}}
1 = 2\sum_{n=0}^{\infty}A_{0}^{2n}(q)\Mathieuce{2n}@{z}{q}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
1 = 2*sum((A[0])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)
1 == 2*Sum[(Subscript[A, 0])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}}
\cos@@{2mz} = \sum_{n=0}^{\infty}A_{2m}^{2n}(q)\Mathieuce{2n}@{z}{q}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle m \neq 0}
cos(2*m*z) = sum((A[2*m])^(2*n)(q)* MathieuCE(2*n, q, z), n = 0..infinity)
Cos[2*m*z] == Sum[(Subscript[A, 2*m])^(2*n)[q]* MathieuC[2*n, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}}
\cos@@{(2m+1)z} = \sum_{n=0}^{\infty}A_{2m+1}^{2n+1}(q)\Mathieuce{2n+1}@{z}{q}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos((2*m + 1)*z) = sum((A[2*m + 1])^(2*n + 1)(q)* MathieuCE(2*n + 1, q, z), n = 0..infinity)
Cos[(2*m + 1)*z] == Sum[(Subscript[A, 2*m + 1])^(2*n + 1)[q]* MathieuC[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}}
\sin@@{(2m+1)z} = \sum_{n=0}^{\infty}B_{2m+1}^{2n+1}(q)\Mathieuse{2n+1}@{z}{q}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sin((2*m + 1)*z) = sum((B[2*m + 1])^(2*n + 1)(q)* MathieuSE(2*n + 1, q, z), n = 0..infinity)
Sin[(2*m + 1)*z] == Sum[(Subscript[B, 2*m + 1])^(2*n + 1)[q]* MathieuS[2*n + 1, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
28.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}}
\sin@@{(2m+2)z} = \sum_{n=0}^{\infty}B_{2m+2}^{2n+2}(q)\Mathieuse{2n+2}@{z}{q}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sin((2*m + 2)*z) = sum((B[2*m + 2])^(2*n + 2)(q)* MathieuSE(2*n + 2, q, z), n = 0..infinity)
Sin[(2*m + 2)*z] == Sum[(Subscript[B, 2*m + 2])^(2*n + 2)[q]* MathieuS[2*n + 2, q, z], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out