DLMF:13.10.E13 (Q4472): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Β 
(10 intermediate revisions by the same user not shown)
Property / constraint
Β 

x > 0 π‘₯ 0 {\displaystyle{\displaystyle x>0}}

x>0
Property / constraint: x > 0 π‘₯ 0 {\displaystyle{\displaystyle x>0}} / rank
Β 
Normal rank
Property / constraint
Β 

2 ⁒ β„œ ⁑ a < β„œ ⁑ Ξ½ + 5 2 2 π‘Ž 𝜈 5 2 {\displaystyle{\displaystyle 2\Re a<\Re\nu+\tfrac{5}{2}}}

2\Re a<\Re\nu+\tfrac{5}{2}
Property / constraint: 2 ⁒ β„œ ⁑ a < β„œ ⁑ Ξ½ + 5 2 2 π‘Ž 𝜈 5 2 {\displaystyle{\displaystyle 2\Re a<\Re\nu+\tfrac{5}{2}}} / rank
Β 
Normal rank
Property / constraint
Β 

β„œ ⁑ b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}}

\Re b>0
Property / constraint: β„œ ⁑ b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}} / rank
Β 
Normal rank
Property / Symbols used
Β 
Property / Symbols used: Bessel function of the first kind / rank
Β 
Normal rank
Property / Symbols used: Bessel function of the first kind / qualifier
Β 
test:

J Ξ½ ⁑ ( z ) Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle J_{\NVar{\nu}}\left(\NVar{z}\right)}}

\BesselJ{\NVar{\nu}}@{\NVar{z}}
Property / Symbols used: Bessel function of the first kind / qualifier
Β 
xml-id: C10.S2.E2.m2adec
Property / Symbols used
Β 
Property / Symbols used: Olver’s confluent hypergeometric function / rank
Β 
Normal rank
Property / Symbols used: Olver’s confluent hypergeometric function / qualifier
Β 
test:

𝐌 ⁑ ( a , b , z ) Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle{\mathbf{M}}\left(\NVar{a},\NVar{b},\NVar{z}\right% )}}

\OlverconfhyperM@{\NVar{a}}{\NVar{b}}{\NVar{z}}
Property / Symbols used: Olver’s confluent hypergeometric function / qualifier
Β 
xml-id: C13.S2.E3.m2ahdec
Property / Symbols used
Β 
Property / Symbols used: Q10770 / rank
Β 
Normal rank
Property / Symbols used: Q10770 / qualifier
Β 
test:

d x π‘₯ {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}

\diff{\NVar{x}}
Property / Symbols used: Q10770 / qualifier
Β 
xml-id: C1.S4.SS4.m1aldec
Property / Symbols used
Β 
Property / Symbols used: base of natural logarithm / rank
Β 
Normal rank
Property / Symbols used: base of natural logarithm / qualifier
Β 
test:

e {\displaystyle{\displaystyle\mathrm{e}}}

\expe
Property / Symbols used: base of natural logarithm / qualifier
Β 
xml-id: C4.S2.E11.m2ahdec
Property / Symbols used
Β 
Property / Symbols used: Q10771 / rank
Β 
Normal rank
Property / Symbols used: Q10771 / qualifier
Β 
test:

∫ {\displaystyle{\displaystyle\int}}

\int
Property / Symbols used: Q10771 / qualifier
Β 
xml-id: C1.S4.SS4.m3aldec
Property / Symbols used
Β 
Property / Symbols used: Q10811 / rank
Β 
Normal rank
Property / Symbols used: Q10811 / qualifier
Β 
test:

β„œ ⁑ absent {\displaystyle{\displaystyle\Re}}

\realpart@@
Property / Symbols used: Q10811 / qualifier
Β 
xml-id: C1.S9.E2.m1ajdec
Property / Symbols used
Β 
Property / Symbols used: Q11566 / rank
Β 
Normal rank
Property / Symbols used: Q11566 / qualifier
Β 
test:

x π‘₯ {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11566 / qualifier
Β 
xml-id: C13.S1.XMD4.m1adec
Property / Symbols used
Β 
Property / Symbols used: Q11566 / rank
Β 
Normal rank
Property / Symbols used: Q11566 / qualifier
Β 
test:

x π‘₯ {\displaystyle{\displaystyle x}}

x
Property / Symbols used: Q11566 / qualifier
Β 
xml-id: C13.S1.XMD4.m1adec

Latest revision as of 15:02, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:13.10.E13
No description defined

    Statements

    ∫ 0 ∞ e - t ⁒ t b - 1 - 1 2 ⁒ Ξ½ ⁒ 𝐌 ⁑ ( a , b , t ) ⁒ J Ξ½ ⁑ ( 2 ⁒ x ⁒ t ) ⁒ d t = x - a + 1 2 ⁒ Ξ½ ⁒ e - x ⁒ 𝐌 ⁑ ( Ξ½ - b + 1 , Ξ½ - a + 1 , x ) , superscript subscript 0 superscript 𝑒 𝑑 superscript 𝑑 𝑏 1 1 2 𝜈 Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑑 Bessel-J 𝜈 2 π‘₯ 𝑑 𝑑 superscript π‘₯ π‘Ž 1 2 𝜈 superscript 𝑒 π‘₯ Kummer-confluent-hypergeometric-bold-M 𝜈 𝑏 1 𝜈 π‘Ž 1 π‘₯ {\displaystyle{\displaystyle\int_{0}^{\infty}e^{-t}t^{b-1-\frac{1}{2}\nu}{% \mathbf{M}}\left(a,b,t\right)J_{\nu}\left(2\sqrt{xt}\right)\mathrm{d}t=x^{-a+% \frac{1}{2}\nu}e^{-x}{\mathbf{M}}\left(\nu-b+1,\nu-a+1,x\right),}}
    0 references
    0 references
    2 ⁒ β„œ ⁑ a < β„œ ⁑ Ξ½ + 5 2 2 π‘Ž 𝜈 5 2 {\displaystyle{\displaystyle 2\Re a<\Re\nu+\tfrac{5}{2}}}
    0 references
    β„œ ⁑ b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}}
    0 references
    x > 0 π‘₯ 0 {\displaystyle{\displaystyle x>0}}
    0 references
    2 ⁒ β„œ ⁑ a < β„œ ⁑ Ξ½ + 5 2 2 π‘Ž 𝜈 5 2 {\displaystyle{\displaystyle 2\Re a<\Re\nu+\tfrac{5}{2}}}
    0 references
    β„œ ⁑ b > 0 𝑏 0 {\displaystyle{\displaystyle\Re b>0}}
    0 references
    J Ξ½ ⁑ ( z ) Bessel-J 𝜈 𝑧 {\displaystyle{\displaystyle J_{\NVar{\nu}}\left(\NVar{z}\right)}}
    C10.S2.E2.m2adec
    0 references
    𝐌 ⁑ ( a , b , z ) Kummer-confluent-hypergeometric-bold-M π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle{\mathbf{M}}\left(\NVar{a},\NVar{b},\NVar{z}\right% )}}
    C13.S2.E3.m2ahdec
    0 references
    d x π‘₯ {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1aldec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2ahdec
    0 references
    ∫ {\displaystyle{\displaystyle\int}}
    C1.S4.SS4.m3aldec
    0 references
    β„œ ⁑ absent {\displaystyle{\displaystyle\Re}}
    C1.S9.E2.m1ajdec
    0 references
    x π‘₯ {\displaystyle{\displaystyle x}}
    C13.S1.XMD4.m1adec
    0 references
    x π‘₯ {\displaystyle{\displaystyle x}}
    C13.S1.XMD4.m1adec
    0 references