DLMF:15.4.E28 (Q5012): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(3 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: gamma function / rank
 
Normal rank
Property / Symbols used: gamma function / qualifier
 
test:

Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}

\EulerGamma@{\NVar{z}}
Property / Symbols used: gamma function / qualifier
 
xml-id: C5.S2.E1.m2afdec
Property / Symbols used
 
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / rank
 
Normal rank
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / qualifier
 
test:

F ( a , b ; c ; z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)}}

\hyperF@{\NVar{a}}{\NVar{b}}{\NVar{c}}{\NVar{z}}
Property / Symbols used: $$={{}_{2}F_{1}}\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)$$ Gauss’ hypergeometric function / qualifier
 
xml-id: C15.S2.E1.m2azdec
Property / Symbols used
 
Property / Symbols used: the ratio of the circumference of a circle to its diameter / rank
 
Normal rank
Property / Symbols used: the ratio of the circumference of a circle to its diameter / qualifier
 
test:

π {\displaystyle{\displaystyle\pi}}

\cpi
Property / Symbols used: the ratio of the circumference of a circle to its diameter / qualifier
 
xml-id: C3.S12.E1.m2aadec
Property / Symbols used
 
Property / Symbols used: Q11645 / rank
 
Normal rank
Property / Symbols used: Q11645 / qualifier
 
test:

a 𝑎 {\displaystyle{\displaystyle a}}

a
Property / Symbols used: Q11645 / qualifier
 
xml-id: C15.S1.XMD4.m1udec

Latest revision as of 12:50, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:15.4.E28
No description defined

    Statements

    F ( a , b ; 1 2 a + 1 2 b + 1 2 ; 1 2 ) = π Γ ( 1 2 a + 1 2 b + 1 2 ) Γ ( 1 2 a + 1 2 ) Γ ( 1 2 b + 1 2 ) . Gauss-hypergeometric-F 𝑎 𝑏 1 2 𝑎 1 2 𝑏 1 2 1 2 𝜋 Euler-Gamma 1 2 𝑎 1 2 𝑏 1 2 Euler-Gamma 1 2 𝑎 1 2 Euler-Gamma 1 2 𝑏 1 2 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{% 2};\tfrac{1}{2}\right)=\sqrt{\pi}\frac{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b% +\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left% (\tfrac{1}{2}b+\tfrac{1}{2}\right)}.}}
    0 references
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2afdec
    0 references
    F ( a , b ; c ; z ) Gauss-hypergeometric-F 𝑎 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(\NVar{a},\NVar{b};\NVar{c};\NVar{z}\right)}}
    C15.S2.E1.m2azdec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2aadec
    0 references
    a 𝑎 {\displaystyle{\displaystyle a}}
    C15.S1.XMD4.m1udec
    0 references