DLMF:19.25.E31 (Q6539): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(2 intermediate revisions by the same user not shown)
Property / Symbols used
 
Property / Symbols used: symmetric elliptic integral of first kind / rank
 
Normal rank
Property / Symbols used: symmetric elliptic integral of first kind / qualifier
 
test:

R F ( x , y , z ) Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(\NVar{x},\NVar{y},\NVar{z}\right)}}

\CarlsonsymellintRF@{\NVar{x}}{\NVar{y}}{\NVar{z}}
Property / Symbols used: symmetric elliptic integral of first kind / qualifier
 
xml-id: C19.S16.E1.m2aidec
Property / Symbols used
 
Property / Symbols used: generic Jacobian elliptic function / rank
 
Normal rank
Property / Symbols used: generic Jacobian elliptic function / qualifier
 
test:

p q ( z , k ) abstract-Jacobi-elliptic p q 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{pq}\left(\NVar{z},\NVar{k}\right)}}

\genJacobiellk{p}{q}@{\NVar{z}}{\NVar{k}}
Property / Symbols used: generic Jacobian elliptic function / qualifier
 
xml-id: C22.S2.E10.m2aadec
Property / Symbols used
 
Property / Symbols used: Q11808 / rank
 
Normal rank
Property / Symbols used: Q11808 / qualifier
 
test:

k 𝑘 {\displaystyle{\displaystyle k}}

k
Property / Symbols used: Q11808 / qualifier
 
xml-id: C19.S1.XMD5.m1addec

Latest revision as of 13:09, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:19.25.E31
No description defined

    Statements

    u = R F ( p s 2 ( u , k ) , q s 2 ( u , k ) , r s 2 ( u , k ) ) ; 𝑢 Carlson-integral-RF abstract-Jacobi-elliptic p s 2 𝑢 𝑘 abstract-Jacobi-elliptic q s 2 𝑢 𝑘 abstract-Jacobi-elliptic r s 2 𝑢 𝑘 {\displaystyle{\displaystyle u=R_{F}\left({\operatorname{ps}^{2}}\left(u,k% \right),{\operatorname{qs}^{2}}\left(u,k\right),{\operatorname{rs}^{2}}\left(u% ,k\right)\right);}}
    0 references
    0 references
    R F ( x , y , z ) Carlson-integral-RF 𝑥 𝑦 𝑧 {\displaystyle{\displaystyle R_{F}\left(\NVar{x},\NVar{y},\NVar{z}\right)}}
    C19.S16.E1.m2aidec
    0 references
    p q ( z , k ) abstract-Jacobi-elliptic p q 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{pq}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E10.m2aadec
    0 references
    k 𝑘 {\displaystyle{\displaystyle k}}
    C19.S1.XMD5.m1addec
    0 references