4.17: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.17.E1 4.17.E1] | | | [https://dlmf.nist.gov/4.17.E1 4.17.E1] || <math qid="Q1666">\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((sin(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.17.E2 4.17.E2] | | | [https://dlmf.nist.gov/4.17.E2 4.17.E2] || <math qid="Q1667">\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((tan(z))/(z), z = 0) = 1</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.17.E3 4.17.E3] | | | [https://dlmf.nist.gov/4.17.E3 4.17.E3] || <math qid="Q1668">\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]</syntaxhighlight> || Successful || Successful || - || Successful [Tested: 1] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.17.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\sin@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((sin(z))/(z), z = 0) = 1
|
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.17.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\tan@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((tan(z))/(z), z = 0) = 1
|
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.17.E3 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}}
\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)
|
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
|
Successful | Successful | - | Successful [Tested: 1] |