4.19: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.19.E7 4.19.E7] | | | [https://dlmf.nist.gov/4.19.E7 4.19.E7] || <math qid="Q1686">\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \pi</math> || <syntaxhighlight lang=mathematica>ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Successful [Tested: 7] || Successful [Tested: 7] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.19.E8 4.19.E8] | | | [https://dlmf.nist.gov/4.19.E8 4.19.E8] || <math qid="Q1687">\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6] | ||
|- | |- | ||
| [https://dlmf.nist.gov/4.19.E9 4.19.E9] | | | [https://dlmf.nist.gov/4.19.E9 4.19.E9] || <math qid="Q1688">\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}</syntaxhighlight> || <math>|z| < \frac{1}{2}\pi</math> || <syntaxhighlight lang=mathematica>ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Manual Skip! || Successful [Tested: 6] | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:06, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.19.E7 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}}
\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < \pi} | ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
|
Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.19.E8 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}}
\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < \frac{1}{2}\pi} | ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
|
Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Manual Skip! | Successful [Tested: 6] |
4.19.E9 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}}
\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |z| < \frac{1}{2}\pi} | ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
|
Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
|
Failure | Failure | Manual Skip! | Successful [Tested: 6] |