5.17: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/5.17#Ex1 5.17#Ex1] || [[Item:Q2180|<math>\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == Gamma[z]*BarnesG[z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 5]
| [https://dlmf.nist.gov/5.17#Ex1 5.17#Ex1] || <math qid="Q2180">\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}</syntaxhighlight> || <math>\realpart@@{z} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == Gamma[z]*BarnesG[z]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 5]
|-  
|-  
| [https://dlmf.nist.gov/5.17#Ex2 5.17#Ex2] || [[Item:Q2181|<math>\BarnesG@{1} = 1</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{1} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[1] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
| [https://dlmf.nist.gov/5.17#Ex2 5.17#Ex2] || <math qid="Q2181">\BarnesG@{1} = 1</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{1} = 1</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[1] == 1</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/5.17.E3 5.17.E3] || [[Item:Q2183|<math>\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == (2*Pi)^(z/2)* Exp[-Divide[1,2]*z*(z + 1)-Divide[1,2]*EulerGamma*(z)^(2)]* Product[(1 +Divide[z,k])^(k)* Exp[- z +Divide[(z)^(2),2*k]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/5.17.E3 5.17.E3] || <math qid="Q2183">\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>BarnesG[z + 1] == (2*Pi)^(z/2)* Exp[-Divide[1,2]*z*(z + 1)-Divide[1,2]*EulerGamma*(z)^(2)]* Product[(1 +Divide[z,k])^(k)* Exp[- z +Divide[(z)^(2),2*k]], {k, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Successful || - || Successful [Tested: 7]
|-  
|-  
| [https://dlmf.nist.gov/5.17.E4 5.17.E4] || [[Item:Q2184|<math>\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(z+1)} > 0, \realpart@@{(t+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[BarnesG[z + 1]] == Divide[1,2]*z*Log[2*Pi]-Divide[1,2]*z*(z + 1)+ z*Log[Gamma[z + 1]]- Integrate[Log[Gamma[t + 1]], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
| [https://dlmf.nist.gov/5.17.E4 5.17.E4] || <math qid="Q2184">\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(z+1)} > 0, \realpart@@{(t+1)} > 0</math> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || <syntaxhighlight lang=mathematica>Log[BarnesG[z + 1]] == Divide[1,2]*z*Log[2*Pi]-Divide[1,2]*z*(z + 1)+ z*Log[Gamma[z + 1]]- Integrate[Log[Gamma[t + 1]], {t, 0, z}, GenerateConditions->None]</syntaxhighlight> || Missing Macro Error || Failure || - || Successful [Tested: 7]
|- style="background: #dfe6e9;"
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/5.17.E6 5.17.E6] || [[Item:Q2186|<math>A = e^{C}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A = e^{C}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A = exp(C)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A == Exp[C]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
| [https://dlmf.nist.gov/5.17.E6 5.17.E6] || <math qid="Q2186">A = e^{C}</math><br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>A = e^{C}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A = exp(C)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">A == Exp[C]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-  
|-  
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>C = limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>C == Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6172709270+.5000000000*I
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || <math qid="Q2187">C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>C = limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>C == Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [10 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: .6172709270+.5000000000*I
Test Values: {C = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7487544770+.8660254040*I
Test Values: {C = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -.7487544770+.8660254040*I
Test Values: {C = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2512455230-.8660254040*I
Test Values: {C = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: .2512455230-.8660254040*I
Line 32: Line 32:
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br>... skip entries to safe data</div></div>
|-  
|-  
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity) = (gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None] == Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || <math qid="Q2187">\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity) = (gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None] == Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)]</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|-  
|-  
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || [[Item:Q2187|<math>\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2)) = (1)/(12)- subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)] == Divide[1,12]- (D[Zeta[temp], {temp, 1}]/.temp-> - 1)</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
| [https://dlmf.nist.gov/5.17.E7 5.17.E7] || <math qid="Q2187">\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2)) = (1)/(12)- subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )</syntaxhighlight> || <syntaxhighlight lang=mathematica>Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)] == Divide[1,12]- (D[Zeta[temp], {temp, 1}]/.temp-> - 1)</syntaxhighlight> || Failure || Successful || Successful [Tested: 0] || Successful [Tested: 1]
|}
|}
</div>
</div>

Latest revision as of 11:13, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
5.17#Ex1 G ( z + 1 ) = Γ ( z ) G ( z ) Barnes-Gamma 𝑧 1 Euler-Gamma 𝑧 Barnes-Gamma 𝑧 {\displaystyle{\displaystyle G\left(z+1\right)=\Gamma\left(z\right)G\left(z% \right)}}
\BarnesG@{z+1} = \EulerGamma@{z}\BarnesG@{z}
z > 0 𝑧 0 {\displaystyle{\displaystyle\Re z>0}}
Error
BarnesG[z + 1] == Gamma[z]*BarnesG[z]
Missing Macro Error Failure - Successful [Tested: 5]
5.17#Ex2 G ( 1 ) = 1 Barnes-Gamma 1 1 {\displaystyle{\displaystyle G\left(1\right)=1}}
\BarnesG@{1} = 1

Error
BarnesG[1] == 1
Missing Macro Error Successful - Successful [Tested: 1]
5.17.E3 G ( z + 1 ) = ( 2 π ) z / 2 exp ( - 1 2 z ( z + 1 ) - 1 2 γ z 2 ) k = 1 ( ( 1 + z k ) k exp ( - z + z 2 2 k ) ) Barnes-Gamma 𝑧 1 superscript 2 𝜋 𝑧 2 1 2 𝑧 𝑧 1 1 2 superscript 𝑧 2 superscript subscript product 𝑘 1 superscript 1 𝑧 𝑘 𝑘 𝑧 superscript 𝑧 2 2 𝑘 {\displaystyle{\displaystyle G\left(z+1\right)=(2\pi)^{z/2}\exp\left(-\tfrac{1% }{2}z(z+1)-\tfrac{1}{2}\gamma z^{2}\right)\*\prod_{k=1}^{\infty}\left(\left(1+% \frac{z}{k}\right)^{k}\exp\left(-z+\frac{z^{2}}{2k}\right)\right)}}
\BarnesG@{z+1} = (2\pi)^{z/2}\exp@{-\tfrac{1}{2}z(z+1)-\tfrac{1}{2}\EulerConstant z^{2}}\*\prod_{k=1}^{\infty}\left(\left(1+\frac{z}{k}\right)^{k}\exp@{-z+\frac{z^{2}}{2k}}\right)

Error
BarnesG[z + 1] == (2*Pi)^(z/2)* Exp[-Divide[1,2]*z*(z + 1)-Divide[1,2]*EulerGamma*(z)^(2)]* Product[(1 +Divide[z,k])^(k)* Exp[- z +Divide[(z)^(2),2*k]], {k, 1, Infinity}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
5.17.E4 Ln G ( z + 1 ) = 1 2 z ln ( 2 π ) - 1 2 z ( z + 1 ) + z Ln Γ ( z + 1 ) - 0 z Ln Γ ( t + 1 ) d t multivalued-natural-logarithm Barnes-Gamma 𝑧 1 1 2 𝑧 2 𝜋 1 2 𝑧 𝑧 1 𝑧 multivalued-natural-logarithm Euler-Gamma 𝑧 1 superscript subscript 0 𝑧 multivalued-natural-logarithm Euler-Gamma 𝑡 1 𝑡 {\displaystyle{\displaystyle\operatorname{Ln}G\left(z+1\right)=\tfrac{1}{2}z% \ln\left(2\pi\right)-\tfrac{1}{2}z(z+1)+z\operatorname{Ln}\Gamma\left(z+1% \right)-\int_{0}^{z}\operatorname{Ln}\Gamma\left(t+1\right)\mathrm{d}t}}
\Ln@@{\BarnesG@{z+1}} = \tfrac{1}{2}z\ln@{2\pi}-\tfrac{1}{2}z(z+1)+z\Ln@@{\EulerGamma@{z+1}}-\int_{0}^{z}\Ln@@{\EulerGamma@{t+1}}\diff{t}
( z + 1 ) > 0 , ( t + 1 ) > 0 formulae-sequence 𝑧 1 0 𝑡 1 0 {\displaystyle{\displaystyle\Re(z+1)>0,\Re(t+1)>0}}
Error
Log[BarnesG[z + 1]] == Divide[1,2]*z*Log[2*Pi]-Divide[1,2]*z*(z + 1)+ z*Log[Gamma[z + 1]]- Integrate[Log[Gamma[t + 1]], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Failure - Successful [Tested: 7]
5.17.E6 A = e C 𝐴 superscript 𝑒 𝐶 {\displaystyle{\displaystyle A=e^{C}}}
A = e^{C}

A = exp(C)
A == Exp[C]
Skipped - no semantic math Skipped - no semantic math - -
5.17.E7 C = lim n ( k = 1 n k ln k - ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) 𝐶 subscript 𝑛 superscript subscript 𝑘 1 𝑛 𝑘 𝑘 1 2 superscript 𝑛 2 1 2 𝑛 1 12 𝑛 1 4 superscript 𝑛 2 {\displaystyle{\displaystyle C=\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln k-% \left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln n+\tfrac{1}{4}n^% {2}\right)}}
C = \lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right)

C = limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity)
C == Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None]
Failure Failure
Failed [10 / 10]
Result: .6172709270+.5000000000*I
Test Values: {C = 1/2*3^(1/2)+1/2*I}

Result: -.7487544770+.8660254040*I
Test Values: {C = -1/2+1/2*I*3^(1/2)}

Result: .2512455230-.8660254040*I
Test Values: {C = 1/2-1/2*I*3^(1/2)}

Result: -1.114779881-.5000000000*I
Test Values: {C = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [10 / 10]
Result: Complex[0.6172709267506544, 0.49999999999999994]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.7487544770337841, 0.8660254037844387]
Test Values: {Rule[C, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
5.17.E7 lim n ( k = 1 n k ln k - ( 1 2 n 2 + 1 2 n + 1 12 ) ln n + 1 4 n 2 ) = γ + ln ( 2 π ) 12 - ζ ( 2 ) 2 π 2 subscript 𝑛 superscript subscript 𝑘 1 𝑛 𝑘 𝑘 1 2 superscript 𝑛 2 1 2 𝑛 1 12 𝑛 1 4 superscript 𝑛 2 2 𝜋 12 diffop Riemann-zeta 1 2 2 superscript 𝜋 2 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln k-\left(% \tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln n+\tfrac{1}{4}n^{2}% \right)=\frac{\gamma+\ln\left(2\pi\right)}{12}-\frac{\zeta'\left(2\right)}{2% \pi^{2}}}}
\lim_{n\to\infty}\left(\sum_{k=1}^{n}k\ln@@{k}-\left(\tfrac{1}{2}n^{2}+\tfrac{1}{2}n+\tfrac{1}{12}\right)\ln@@{n}+\tfrac{1}{4}n^{2}\right) = \frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}}

limit(sum(k*ln(k), k = 1..n)-((1)/(2)*(n)^(2)+(1)/(2)*n +(1)/(12))*ln(n)+(1)/(4)*(n)^(2), n = infinity) = (gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2))
Limit[Sum[k*Log[k], {k, 1, n}, GenerateConditions->None]-(Divide[1,2]*(n)^(2)+Divide[1,2]*n +Divide[1,12])*Log[n]+Divide[1,4]*(n)^(2), n -> Infinity, GenerateConditions->None] == Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)]
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
5.17.E7 γ + ln ( 2 π ) 12 - ζ ( 2 ) 2 π 2 = 1 12 - ζ ( - 1 ) 2 𝜋 12 diffop Riemann-zeta 1 2 2 superscript 𝜋 2 1 12 diffop Riemann-zeta 1 1 {\displaystyle{\displaystyle\frac{\gamma+\ln\left(2\pi\right)}{12}-\frac{\zeta% '\left(2\right)}{2\pi^{2}}=\frac{1}{12}-\zeta'\left(-1\right)}}
\frac{\EulerConstant+\ln@{2\pi}}{12}-\frac{\Riemannzeta'@{2}}{2\pi^{2}} = \frac{1}{12}-\Riemannzeta'@{-1}

(gamma + ln(2*Pi))/(12)-(subs( temp=2, diff( Zeta(temp), temp$(1) ) ))/(2*(Pi)^(2)) = (1)/(12)- subs( temp=- 1, diff( Zeta(temp), temp$(1) ) )
Divide[EulerGamma + Log[2*Pi],12]-Divide[D[Zeta[temp], {temp, 1}]/.temp-> 2,2*(Pi)^(2)] == Divide[1,12]- (D[Zeta[temp], {temp, 1}]/.temp-> - 1)
Failure Successful Successful [Tested: 0] Successful [Tested: 1]