10.64: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.64.E1 10.64.E1] | | | [https://dlmf.nist.gov/10.64.E1 10.64.E1] || <math qid="Q3829">\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}</syntaxhighlight> || <math>\realpart@@{(n+k+1)} > 0</math> || <syntaxhighlight lang=mathematica>KelvinBer(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(cos(x*sin(t)- n*t)*cosh(x*sin(t)), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBer[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Cos[x*Sin[t]- n*t]*Cosh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out | ||
|- | |- | ||
| [https://dlmf.nist.gov/10.64.E2 10.64.E2] | | | [https://dlmf.nist.gov/10.64.E2 10.64.E2] || <math qid="Q3830">\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>KelvinBei(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(sin(x*sin(t)- n*t)*sinh(x*sin(t)), t = 0..Pi)</syntaxhighlight> || <syntaxhighlight lang=mathematica>KelvinBei[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Sin[x*Sin[t]- n*t]*Sinh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]</syntaxhighlight> || Failure || Aborted || Successful [Tested: 9] || Skipped - Because timed out | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:28, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.64.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t}}
\Kelvinber{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\cos@{x\sin@@{t}-nt}\cosh@{x\sin@@{t}}\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(n+k+1)} > 0} | KelvinBer(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(cos(x*sin(t)- n*t)*cosh(x*sin(t)), t = 0..Pi)
|
KelvinBer[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Cos[x*Sin[t]- n*t]*Cosh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 9] | Skipped - Because timed out |
10.64.E2 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t}}
\Kelvinbei{n}@{x\sqrt{2}} = \frac{(-1)^{n}}{\pi}\int_{0}^{\pi}\sin@{x\sin@@{t}-nt}\sinh@{x\sin@@{t}}\diff{t} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | KelvinBei(n, x*sqrt(2)) = ((- 1)^(n))/(Pi)*int(sin(x*sin(t)- n*t)*sinh(x*sin(t)), t = 0..Pi)
|
KelvinBei[n, x*Sqrt[2]] == Divide[(- 1)^(n),Pi]*Integrate[Sin[x*Sin[t]- n*t]*Sinh[x*Sin[t]], {t, 0, Pi}, GenerateConditions->None]
|
Failure | Aborted | Successful [Tested: 9] | Skipped - Because timed out |