14.29: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/14.29.E1 14.29.E1] | | | [https://dlmf.nist.gov/14.29.E1 14.29.E1] || <math qid="Q4962">\left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>(1 - (z)^(2))*diff(w, [z$(2)])- 2*z*diff(w, z)+(nu*(nu + 1)-((mu[1])^(2))/(2*(1 - z))-((mu[2])^(2))/(2*(1 + z)))*w = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>(1 - (z)^(2))*D[w, {z, 2}]- 2*z*D[w, z]+(\[Nu]*(\[Nu]+ 1)-Divide[(Subscript[\[Mu], 1])^(2),2*(1 - z)]-Divide[(Subscript[\[Mu], 2])^(2),2*(1 + z)])*w == 0</syntaxhighlight> || Failure || Failure || <div class="toccolours mw-collapsible mw-collapsed">Failed [300 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: -1.000000001-3.732050810*I | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.000000001-3.732050810*I | Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = 1/2*3^(1/2)+1/2*I}</syntaxhighlight><br><syntaxhighlight lang=mathematica>Result: -1.000000001-3.732050810*I | ||
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [296 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7320508075688783, -4.732050807568878] | Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = -1/2+1/2*I*3^(1/2)}</syntaxhighlight><br>... skip entries to safe data</div></div> || <div class="toccolours mw-collapsible mw-collapsed">Failed [296 / 300]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: Complex[-0.7320508075688783, -4.732050807568878] |
Latest revision as of 11:38, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
14.29.E1 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0}
\left(1-z^{2}\right)\deriv[2]{w}{z}-2z\deriv{w}{z}+{\left(\nu(\nu+1)-\frac{\mu_{1}^{2}}{2(1-z)}-\frac{\mu_{2}^{2}}{2(1+z)}\right)w} = 0 |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | (1 - (z)^(2))*diff(w, [z$(2)])- 2*z*diff(w, z)+(nu*(nu + 1)-((mu[1])^(2))/(2*(1 - z))-((mu[2])^(2))/(2*(1 + z)))*w = 0
|
(1 - (z)^(2))*D[w, {z, 2}]- 2*z*D[w, z]+(\[Nu]*(\[Nu]+ 1)-Divide[(Subscript[\[Mu], 1])^(2),2*(1 - z)]-Divide[(Subscript[\[Mu], 2])^(2),2*(1 + z)])*w == 0
|
Failure | Failure | Failed [300 / 300] Result: -1.000000001-3.732050810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = 1/2*3^(1/2)+1/2*I}
Result: -1.000000001-3.732050810*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, mu[1] = 1/2*3^(1/2)+1/2*I, mu[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [296 / 300]
Result: Complex[-0.7320508075688783, -4.732050807568878]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.3322676295501878*^-15, -5.464101615137755]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[μ, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |