DLMF:4.2.E26 (Q1522): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
 
(4 intermediate revisions by the same user not shown)
Property / constraint
 

z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}

z\neq 0
Property / constraint: z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}} / rank
 
Normal rank
Property / Symbols used
 
Property / Symbols used: exponential function / rank
 
Normal rank
Property / Symbols used: exponential function / qualifier
 
test:

exp z 𝑧 {\displaystyle{\displaystyle\exp\NVar{z}}}

\exp@@{\NVar{z}}
Property / Symbols used: exponential function / qualifier
 
xml-id: C4.S2.E19.m2agdec
Property / Symbols used
 
Property / Symbols used: general logarithm function / rank
 
Normal rank
Property / Symbols used: general logarithm function / qualifier
 
test:

Ln z multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\operatorname{Ln}\NVar{z}}}

\Ln@@{\NVar{z}}
Property / Symbols used: general logarithm function / qualifier
 
xml-id: C4.S2.E1.m2acdec
Property / Symbols used
 
Property / Symbols used: Q11221 / rank
 
Normal rank
Property / Symbols used: Q11221 / qualifier
 
test:

a 𝑎 {\displaystyle{\displaystyle a}}

a
Property / Symbols used: Q11221 / qualifier
 
xml-id: C4.S1.XMD4.m1cdec
Property / Symbols used
 
Property / Symbols used: Q11217 / rank
 
Normal rank
Property / Symbols used: Q11217 / qualifier
 
test:

z 𝑧 {\displaystyle{\displaystyle z}}

z
Property / Symbols used: Q11217 / qualifier
 
xml-id: C4.S1.XMD8.m1sdec

Latest revision as of 17:03, 1 January 2020

No description defined
Language Label Description Also known as
English
DLMF:4.2.E26
No description defined

    Statements

    z a = exp ( a Ln z ) , superscript 𝑧 𝑎 𝑎 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\operatorname{Ln}z\right),}}
    0 references
    0 references
    z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
    0 references
    exp z 𝑧 {\displaystyle{\displaystyle\exp\NVar{z}}}
    C4.S2.E19.m2agdec
    0 references
    Ln z multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\operatorname{Ln}\NVar{z}}}
    C4.S2.E1.m2acdec
    0 references
    a 𝑎 {\displaystyle{\displaystyle a}}
    C4.S1.XMD4.m1cdec
    0 references
    z 𝑧 {\displaystyle{\displaystyle z}}
    C4.S1.XMD8.m1sdec
    0 references