21.6: Difference between revisions
Jump to navigation
Jump to search
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
Admin moved page Main Page to Verifying DLMF with Maple and Mathematica |
||
Line 14: | Line 14: | ||
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica | ||
|- | |- | ||
| [https://dlmf.nist.gov/21.6.E6 21.6.E6] | | | [https://dlmf.nist.gov/21.6.E6 21.6.E6] || <math qid="Q6894">\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega), = ..infinity), = ..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || - | ||
|} | |} | ||
</div> | </div> |
Latest revision as of 11:56, 28 June 2021
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
21.6.E6 | Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}}
\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}} |
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle } | RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega), = ..infinity), = ..infinity)
|
Error
|
Missing Macro Error | Missing Macro Error | - | - |