26.10: Difference between revisions

From testwiki
Jump to navigation Jump to search
 
 
Line 14: Line 14:
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-  
|-  
| [https://dlmf.nist.gov/26.10.E2 26.10.E2] || [[Item:Q7885|<math>\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
| [https://dlmf.nist.gov/26.10.E2 26.10.E2] || <math qid="Q7885">\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || <div class="toccolours mw-collapsible mw-collapsed">Failed [1 / 10]<div class="mw-collapsible-content"><syntaxhighlight lang=mathematica>Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br></div></div>
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}</syntaxhighlight><br></div></div>
|-  
|-  
| [https://dlmf.nist.gov/26.10.E3 26.10.E3] || [[Item:Q7886|<math>\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 30]
| [https://dlmf.nist.gov/26.10.E3 26.10.E3] || <math qid="Q7886">\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})</math><br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})</syntaxhighlight> || <math>|x| < 1</math> || <syntaxhighlight lang=mathematica>sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None]</syntaxhighlight> || Failure || Failure || Error || Successful [Tested: 30]
|}
|}
</div>
</div>

Latest revision as of 12:06, 28 June 2021


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}}
\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity)
Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [1 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

26.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})}
\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1}
sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k)
Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None]
Failure Failure Error Successful [Tested: 30]