Results of Multidimensional Theta Functions: Difference between revisions

From testwiki
Jump to navigation Jump to search
Line 1: Line 1:
{| class="wikitable sortable"
<div style="width: 100%; height: 75vh; overflow: auto;">
{| class="wikitable sortable" style="margin: 0;"
|-
|-
! DLMF !! Formula !! Constraints !! Maple !! Mathematica !! Symbolic<br>Maple !! Symbolic<br>Mathematica !! Numeric<br>Maple !! Numeric<br>Mathematica
! scope="col" style="position: sticky; top: 0;" | DLMF
|-
! scope="col" style="position: sticky; top: 0;" | Formula
| [https://dlmf.nist.gov/21.2.E1 21.2.E1] || [[Item:Q6857|<math>\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z, Omega) = sum(exp(2*Pi*I*((1)/(2)*n * Omega * n + n * z)),  = ..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
! scope="col" style="position: sticky; top: 0;" | Constraints
|-
! scope="col" style="position: sticky; top: 0;" | Maple
| [https://dlmf.nist.gov/21.2.E8 21.2.E8] || [[Item:Q6864|<math>\Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z, Omega) = JacobiTheta3(Pi*z,exp(I*Pi*Omega))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
! scope="col" style="position: sticky; top: 0;" | Mathematica
|-
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Maple
| [https://dlmf.nist.gov/21.3.E1 21.3.E1] || [[Item:Q6869|<math>\Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(- z, Omega) = RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
! scope="col" style="position: sticky; top: 0;" | Symbolic<br>Mathematica
|-
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Maple
| [https://dlmf.nist.gov/21.3.E2 21.3.E2] || [[Item:Q6870|<math>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z + m[1], Omega) = RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
! scope="col" style="position: sticky; top: 0;" | Numeric<br>Mathematica
|-
| [https://dlmf.nist.gov/21.3.E3 21.3.E3] || [[Item:Q6871|<math>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z + m[1]+ Omega*m[2], Omega) = exp(- 2*Pi*I*((1)/(2)*m[2] * Omega * m[2]+ m[2] * z))*RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.6.E6 21.6.E6] || [[Item:Q6894|<math>\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega),  = ..infinity),  = ..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.7.E1 21.7.E1] || [[Item:Q6897|<math>P(\lambda,\mu) = 0</math>]] || <math></math> || <syntaxhighlight lang=mathematica>P(lambda , mu) = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>P[\[Lambda], \[Mu]] == 0</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.7.E11 21.7.E11] || [[Item:Q6909|<math>\mu^{2} = Q(\lambda)</math>]] || <math></math> || <syntaxhighlight lang=mathematica>(mu)^(2) = Q(lambda)</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Mu]^(2) == Q[\[Lambda]]</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.7.E13 21.7.E13] || [[Item:Q6911|<math>\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})</math>]] || <math></math> || <syntaxhighlight lang=mathematica>eta(T) = eta((T)^(c))</syntaxhighlight> || <syntaxhighlight lang=mathematica>\[Eta][T] == \[Eta][(T)^(c)]</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.9.E1 21.9.E1] || [[Item:Q6917|<math>4u_{t} = 6uu_{x}+u_{xxx}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>4*u[t] = 6*u*u[x]+ u[x, x, x]</syntaxhighlight> || <syntaxhighlight lang=mathematica>4*Subscript[u, t] == 6*u*Subscript[u, x]+ Subscript[u, x, x, x]</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.9.E2 21.9.E2] || [[Item:Q6918|<math>iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u</math>]] || <math></math> || <syntaxhighlight lang=mathematica>I*u[t] = -(1)/(2)*u[x, x]+(abs(u))^(2)* u</syntaxhighlight> || <syntaxhighlight lang=mathematica>I*Subscript[u, t] == -Divide[1,2]*Subscript[u, x, x]+(Abs[u])^(2)* u</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.9.E3 21.9.E3] || [[Item:Q6919|<math>(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0</math>]] || <math></math> || <syntaxhighlight lang=mathematica>- 4*u[t]+ 6*u*u[x]+ u[x, x, x][x]+ 3*u[y, y] = 0</syntaxhighlight> || <syntaxhighlight lang=mathematica>Subscript[- 4*Subscript[u, t]+ 6*u*Subscript[u, x]+ Subscript[u, x, x, x], x]+ 3*Subscript[u, y, y] == 0</syntaxhighlight> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.9.E4 21.9.E4] || [[Item:Q6920|<math>u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}</math>]] || <math></math> || <syntaxhighlight lang=mathematica>u(x , y , t) = c + 2*diff(ln(RiemannTheta(k*x + l*y + omega*t + phi, Omega)), [x$(2)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
|-
|-
| [https://dlmf.nist.gov/21.2.E1 21.2.E1] || [[Item:Q6857|<math>\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z, Omega) = sum(exp(2*Pi*I*((1)/(2)*n * Omega * n + n * z)),  = ..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.2.E8 21.2.E8] || [[Item:Q6864|<math>\Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z, Omega) = JacobiTheta3(Pi*z,exp(I*Pi*Omega))</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.3.E1 21.3.E1] || [[Item:Q6869|<math>\Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(- z, Omega) = RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.3.E2 21.3.E2] || [[Item:Q6870|<math>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z + m[1], Omega) = RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.3.E3 21.3.E3] || [[Item:Q6871|<math>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta(z + m[1]+ Omega*m[2], Omega) = exp(- 2*Pi*I*((1)/(2)*m[2] * Omega * m[2]+ m[2] * z))*RiemannTheta(z, Omega)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|-
| [https://dlmf.nist.gov/21.6.E6 21.6.E6] || [[Item:Q6894|<math>\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega),  = ..infinity),  = ..infinity)</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.7.E1 21.7.E1] || [[Item:Q6897|<math>P(\lambda,\mu) = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>P(\lambda,\mu) = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">P(lambda , mu) = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">P[\[Lambda], \[Mu]] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.7.E11 21.7.E11] || [[Item:Q6909|<math>\mu^{2} = Q(\lambda)</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\mu^{2} = Q(\lambda)</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">(mu)^(2) = Q(lambda)</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Mu]^(2) == Q[\[Lambda]]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.7.E13 21.7.E13] || [[Item:Q6911|<math>\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">eta(T) = eta((T)^(c))</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">\[Eta][T] == \[Eta][(T)^(c)]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.9.E1 21.9.E1] || [[Item:Q6917|<math>4u_{t} = 6uu_{x}+u_{xxx}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>4u_{t} = 6uu_{x}+u_{xxx}</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">4*u[t] = 6*u*u[x]+ u[x, x, x]</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">4*Subscript[u, t] == 6*u*Subscript[u, x]+ Subscript[u, x, x, x]</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.9.E2 21.9.E2] || [[Item:Q6918|<math>iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">I*u[t] = -(1)/(2)*u[x, x]+(abs(u))^(2)* u</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">I*Subscript[u, t] == -Divide[1,2]*Subscript[u, x, x]+(Abs[u])^(2)* u</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|- style="background: #dfe6e9;"
| [https://dlmf.nist.gov/21.9.E3 21.9.E3] || [[Item:Q6919|<math>(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%; background: inherit;" inline>(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0</syntaxhighlight> || <math></math> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">- 4*u[t]+ 6*u*u[x]+ u[x, x, x][x]+ 3*u[y, y] = 0</pre></div> || <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre style="background: inherit;">Subscript[- 4*Subscript[u, t]+ 6*u*Subscript[u, x]+ Subscript[u, x, x, x], x]+ 3*Subscript[u, y, y] == 0</pre></div> || Skipped - no semantic math || Skipped - no semantic math || - || -
|-
| [https://dlmf.nist.gov/21.9.E4 21.9.E4] || [[Item:Q6920|<math>u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}</math>]]<br><syntaxhighlight lang="tex" style="font-size: 75%;" inline>u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}</syntaxhighlight> || <math></math> || <syntaxhighlight lang=mathematica>u(x , y , t) = c + 2*diff(ln(RiemannTheta(k*x + l*y + omega*t + phi, Omega)), [x$(2)])</syntaxhighlight> || <syntaxhighlight lang=mathematica>Error</syntaxhighlight> || Missing Macro Error || Missing Macro Error || - || -
|}
|}
</div>

Revision as of 10:20, 21 May 2021

DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
21.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}}
\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}} = \sum_{\mathbf{n}\in\Integers^{g}}e^{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta(z, Omega) = sum(exp(2*Pi*I*((1)/(2)*n * Omega * n + n * z)),  = ..infinity)
Error
Missing Macro Error Missing Macro Error - -
21.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}}
\Riemanntheta@{z}{\Omega} = \Jacobithetatau{3}@{\pi z}{\Omega}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta(z, Omega) = JacobiTheta3(Pi*z,exp(I*Pi*Omega))
Error
Missing Macro Error Missing Macro Error - -
21.3.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}}
\Riemanntheta@{-\mathbf{z}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta(- z, Omega) = RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -
21.3.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}}
\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}}{\boldsymbol{{\Omega}}} = \Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta(z + m[1], Omega) = RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -
21.3.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}}
\Riemanntheta@{\mathbf{z}+\mathbf{m}_{1}+\boldsymbol{{\Omega}}\mathbf{m}_{2}}{\boldsymbol{{\Omega}}} = e^{-2\pi i\left(\frac{1}{2}\mathbf{m}_{2}\cdot\boldsymbol{{\Omega}}\cdot\mathbf{m}_{2}+\mathbf{m}_{2}\cdot\mathbf{z}\right)}\Riemanntheta@{\mathbf{z}}{\boldsymbol{{\Omega}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta(z + m[1]+ Omega*m[2], Omega) = exp(- 2*Pi*I*((1)/(2)*m[2] * Omega * m[2]+ m[2] * z))*RiemannTheta(z, Omega)
Error
Missing Macro Error Missing Macro Error - -
21.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}}
\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}+\mathbf{y}-\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}+\mathbf{u}-\mathbf{v}}{2}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\frac{\mathbf{x}-\mathbf{y}-\mathbf{u}+\mathbf{v}}{2}}{\boldsymbol{{\Omega}}} = \frac{1}{2^{g}}\sum_{\boldsymbol{{\alpha}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}\,\sum_{\boldsymbol{{\beta}}\in\frac{1}{2}\Integers^{g}/\Integers^{g}}e^{2\pi i\left(2\boldsymbol{{\alpha}}\cdot\boldsymbol{{\Omega}}\cdot\boldsymbol{{\alpha}}+\boldsymbol{{\alpha}}\cdot[\mathbf{x}+\mathbf{y}+\mathbf{u}+\mathbf{v}]\right)}\*\Riemanntheta@{\mathbf{x}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{y}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{u}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}\Riemanntheta@{\mathbf{v}+\boldsymbol{{\Omega}}\boldsymbol{{\alpha}}+\boldsymbol{{\beta}}}{\boldsymbol{{\Omega}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
RiemannTheta((x + y + u + v)/(2), Omega)*RiemannTheta((x + y - u - v)/(2), Omega)*RiemannTheta((x - y + u - v)/(2), Omega)*RiemannTheta((x - y - u + v)/(2), Omega) = (1)/((2)^(g))*sum(sum(exp(2*Pi*I*(2*alpha * Omega * alpha + alpha *(x + y + u + v)))* RiemannTheta(x + Omega*alpha + beta, Omega)*RiemannTheta(y + Omega*alpha + beta, Omega)*RiemannTheta(u + Omega*alpha + beta, Omega)*RiemannTheta(v + Omega*alpha + beta, Omega),  = ..infinity),  = ..infinity)
Error
Missing Macro Error Missing Macro Error - -
21.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle P(\lambda,\mu) = 0}
P(\lambda,\mu) = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
P(lambda , mu) = 0
P[\[Lambda], \[Mu]] == 0
Skipped - no semantic math Skipped - no semantic math - -
21.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mu^{2} = Q(\lambda)}
\mu^{2} = Q(\lambda)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(mu)^(2) = Q(lambda)
\[Mu]^(2) == Q[\[Lambda]]
Skipped - no semantic math Skipped - no semantic math - -
21.7.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})}
\boldsymbol{{\eta}}(T) = \boldsymbol{{\eta}}(T^{c})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
eta(T) = eta((T)^(c))
\[Eta][T] == \[Eta][(T)^(c)]
Skipped - no semantic math Skipped - no semantic math - -
21.9.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 4u_{t} = 6uu_{x}+u_{xxx}}
4u_{t} = 6uu_{x}+u_{xxx}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
4*u[t] = 6*u*u[x]+ u[x, x, x]
4*Subscript[u, t] == 6*u*Subscript[u, x]+ Subscript[u, x, x, x]
Skipped - no semantic math Skipped - no semantic math - -
21.9.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u}
iu_{t} = -\tfrac{1}{2}u_{xx}+|u|^{2}u
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
I*u[t] = -(1)/(2)*u[x, x]+(abs(u))^(2)* u
I*Subscript[u, t] == -Divide[1,2]*Subscript[u, x, x]+(Abs[u])^(2)* u
Skipped - no semantic math Skipped - no semantic math - -
21.9.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0}
(-4u_{t}+6uu_{x}+u_{xxx})_{x}+3u_{yy} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
- 4*u[t]+ 6*u*u[x]+ u[x, x, x][x]+ 3*u[y, y] = 0
Subscript[- 4*Subscript[u, t]+ 6*u*Subscript[u, x]+ Subscript[u, x, x, x], x]+ 3*Subscript[u, y, y] == 0
Skipped - no semantic math Skipped - no semantic math - -
21.9.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}}
u(x,y,t) = c+2\pderiv[2]{}{x}\ln@{\Riemanntheta@{\mathbf{k}x+\mathbf{l}y+\boldsymbol{{\omega}}t+\boldsymbol{{\phi}}}{\boldsymbol{{\Omega}}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
u(x , y , t) = c + 2*diff(ln(RiemannTheta(k*x + l*y + omega*t + phi, Omega)), [x$(2)])
Error
Missing Macro Error Missing Macro Error - -