DLMF:10.65.E4 (Q3836): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / Symbols used
 
Property / Symbols used: Kelvin function / rank
 
Normal rank
Property / Symbols used: Kelvin function / qualifier
 
test:

bei ν ( x ) Kelvin-bei 𝜈 𝑥 {\displaystyle{\displaystyle\operatorname{bei}_{\NVar{\nu}}\left(\NVar{x}% \right)}}

\Kelvinbei{\NVar{\nu}}@{\NVar{x}}
Property / Symbols used: Kelvin function / qualifier
 
xml-id: C10.S61.E1.m3acdec

Revision as of 13:22, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:10.65.E4
No description defined

    Statements

    kei n x = - 1 2 ( 1 2 x ) - n k = 0 n - 1 ( n - k - 1 ) ! k ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k - ln ( 1 2 x ) bei n x - 1 4 π ber n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k . Kelvin-kei 𝑛 𝑥 1 2 superscript 1 2 𝑥 𝑛 superscript subscript 𝑘 0 𝑛 1 𝑛 𝑘 1 𝑘 3 4 𝑛 𝜋 1 2 𝑘 𝜋 superscript 1 4 superscript 𝑥 2 𝑘 1 2 𝑥 Kelvin-bei 𝑛 𝑥 1 4 𝜋 Kelvin-ber 𝑛 𝑥 1 2 superscript 1 2 𝑥 𝑛 superscript subscript 𝑘 0 digamma 𝑘 1 digamma 𝑛 𝑘 1 𝑘 𝑛 𝑘 3 4 𝑛 𝜋 1 2 𝑘 𝜋 superscript 1 4 superscript 𝑥 2 𝑘 {\displaystyle{\displaystyle\operatorname{kei}_{n}x=-\tfrac{1}{2}(\tfrac{1}{2}% x)^{-n}\sum_{k=0}^{n-1}\frac{(n-k-1)!}{k!}\sin\left(\tfrac{3}{4}n\pi+\tfrac{1}% {2}k\pi\right)(\tfrac{1}{4}x^{2})^{k}-\ln\left(\tfrac{1}{2}x\right)% \operatorname{bei}_{n}x-\tfrac{1}{4}\pi\operatorname{ber}_{n}x+\tfrac{1}{2}(% \tfrac{1}{2}x)^{n}\sum_{k=0}^{\infty}\frac{\psi\left(k+1\right)+\psi\left(n+k+% 1\right)}{k!(n+k)!}\sin\left(\tfrac{3}{4}n\pi+\tfrac{1}{2}k\pi\right)(\tfrac{1% }{4}x^{2})^{k}.}}
    0 references
    0 references
    bei ν ( x ) Kelvin-bei 𝜈 𝑥 {\displaystyle{\displaystyle\operatorname{bei}_{\NVar{\nu}}\left(\NVar{x}% \right)}}
    C10.S61.E1.m3acdec
    0 references