DLMF:13.14.E27 (Q4519): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / Symbols used
 
Property / Symbols used: base of natural logarithm / rank
 
Normal rank
Property / Symbols used: base of natural logarithm / qualifier
 
test:

e {\displaystyle{\displaystyle\mathrm{e}}}

\expe
Property / Symbols used: base of natural logarithm / qualifier
 
xml-id: C4.S2.E11.m2apdec

Revision as of 15:07, 2 January 2020

No description defined
Language Label Description Also known as
English
DLMF:13.14.E27
No description defined

    Statements

    𝒲 { M κ , μ ( z ) , W - κ , μ ( e ± π i z ) } = Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e ( 1 2 + μ ) π i , Wronskian Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 Whittaker-confluent-hypergeometric-W 𝜅 𝜇 superscript 𝑒 plus-or-minus 𝜋 imaginary-unit 𝑧 Euler-Gamma 1 2 𝜇 Euler-Gamma 1 2 𝜇 𝜅 superscript 𝑒 minus-or-plus 1 2 𝜇 𝜋 imaginary-unit {\displaystyle{\displaystyle\mathscr{W}\left\{M_{\kappa,\mu}\left(z\right),W_{% -\kappa,\mu}\left(e^{\pm\pi\mathrm{i}}z\right)\right\}=\frac{\Gamma\left(1+2% \mu\right)}{\Gamma\left(\frac{1}{2}+\mu+\kappa\right)}e^{\mp(\frac{1}{2}+\mu)% \pi\mathrm{i}},}}
    0 references
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2ajdec
    0 references
    M κ , μ ( z ) Whittaker-confluent-hypergeometric-M 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle M_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E2.m2aldec
    0 references
    W κ , μ ( z ) Whittaker-confluent-hypergeometric-W 𝜅 𝜇 𝑧 {\displaystyle{\displaystyle W_{\NVar{\kappa},\NVar{\mu}}\left(\NVar{z}\right)}}
    C13.S14.E3.m2aodec
    0 references
    𝒲 Wronskian {\displaystyle{\displaystyle\mathscr{W}}}
    C1.S13.Px2.p1.m3abdec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2ahdec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2apdec
    0 references