DLMF:15.6.E5 (Q5043): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
imported>Admin
Property / constraint
 

b , c - b 1 , 2 , 3 , formulae-sequence 𝑏 𝑐 𝑏 1 2 3 {\displaystyle{\displaystyle b,c-b\neq 1,2,3,\dots}}

b,c-b\neq 1,2,3,\dots
Property / constraint: b , c - b 1 , 2 , 3 , formulae-sequence 𝑏 𝑐 𝑏 1 2 3 {\displaystyle{\displaystyle b,c-b\neq 1,2,3,\dots}} / rank
 
Normal rank

Revision as of 16:54, 30 December 2019

No description defined
Language Label Description Also known as
English
DLMF:15.6.E5
No description defined

    Statements

    𝐅 ( a , b ; c ; z ) = e - c π i Γ ( 1 - b ) Γ ( 1 + b - c ) 1 4 π 2 A ( 0 + , 1 + , 0 - , 1 - ) t b - 1 ( 1 - t ) c - b - 1 ( 1 - z t ) a d t , scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑧 superscript 𝑒 𝑐 𝜋 imaginary-unit Euler-Gamma 1 𝑏 Euler-Gamma 1 𝑏 𝑐 1 4 superscript 𝜋 2 superscript subscript 𝐴 limit-from 0 limit-from 1 limit-from 0 limit-from 1 superscript 𝑡 𝑏 1 superscript 1 𝑡 𝑐 𝑏 1 superscript 1 𝑧 𝑡 𝑎 𝑡 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=e^{-c\pi\mathrm{i}}% \Gamma\left(1-b\right)\Gamma\left(1+b-c\right)\*\frac{1}{4\pi^{2}}\int_{A}^{(0% +,1+,0-,1-)}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\mathrm{d}t,}}
    0 references
    0 references
    | ph ( 1 - z ) | < π phase 1 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references
    | ph ( 1 - z ) | < π ph 1 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references
    b , c - b 1 , 2 , 3 , formulae-sequence 𝑏 𝑐 𝑏 1 2 3 {\displaystyle{\displaystyle b,c-b\neq 1,2,3,\dots}}
    0 references