DLMF:15.8.E1 (Q5058): Difference between revisions

From testwiki
Jump to navigation Jump to search
imported>Admin
 
imported>Admin
Property / constraint
 

| ph ( 1 - z ) | < π phase 1 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}

|\phase@{1-z}|<\pi
Property / constraint: | ph ( 1 - z ) | < π phase 1 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}} / rank
 
Normal rank

Revision as of 16:55, 30 December 2019

No description defined
Language Label Description Also known as
English
DLMF:15.8.E1
No description defined

    Statements

    𝐅 ( a , b c ; z ) = ( 1 - z ) - a 𝐅 ( a , c - b c ; z z - 1 ) = ( 1 - z ) - b 𝐅 ( c - a , b c ; z z - 1 ) = ( 1 - z ) c - a - b 𝐅 ( c - a , c - b c ; z ) , scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑎 scaled-hypergeometric-bold-F 𝑎 𝑐 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑏 scaled-hypergeometric-bold-F 𝑐 𝑎 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑐 𝑎 𝑏 scaled-hypergeometric-bold-F 𝑐 𝑎 𝑐 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};z\right)=(1-z)^{-a}% \mathbf{F}\left({a,c-b\atop c};\frac{z}{z-1}\right)=(1-z)^{-b}\mathbf{F}\left(% {c-a,b\atop c};\frac{z}{z-1}\right)=(1-z)^{c-a-b}\mathbf{F}\left({c-a,c-b\atop c% };z\right),}}
    0 references
    0 references
    | ph ( 1 - z ) | < π phase 1 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references